Tag Archives: slanted edge

Minimalist ESF, LSF, MTF by Monotonic Regression

Because the Slanted Edge Method of estimating the Spectral Frequency Response of a camera and lens is one of the more popular articles on this site, I have fielded variations on the following question many times over the past ten years:

How do you go from the intensity cloud  produced by the projection of a slanted edge captured in a raw file to a good estimate of the relevant Line Spread Function?

Figure 1.  Slanted edge captured in the raw data and projected to the edge normal.  The data noisy because of shot noise and PRNU.  How to estimate the underlying edge profile (orange line, the Edge Spread Function)?

So I decided to write down the answer that I have settled on.  It relies on monotone spline regression to obtain an Edge Spread Function (ESF) and then reuses the parameters of the regression to infer the relative regularized Line Spread Function (LSF) analytically in one go.

This front-loads all uncertainty to just the estimation of the ESF since the other steps on the way to the SFR become purely mechanical.  In addition the monotonicity constraint puts some guardrails around the curve, keeping it on the straight and narrow without further effort.

This minimalist, what-you-see-is-what-you-get approach gets around the usual need for signal conditioning such as binning, finite difference calculations and other filtering, with their drawbacks and compensations.  It has the potential to be further refined so consider it a hot-rod DIY kit.  Even so it is an intuitively direct implementation of the method and it provides strong validation for Frans van den Bergh’s open source MTF Mapper, the undisputed king in this space,[1] as it produces very similar results with raw slanted edge captures. Continue reading Minimalist ESF, LSF, MTF by Monotonic Regression

What is Resolution?

In photography Resolution refers to the ability of an imaging system to capture fine detail from the scene, making it a key determinant of Image Quality.  For instance, with high resolution equipment we might be able to count the number of tiny leaves on a distant tree, while we might not with a lower-res one.  Or the leaves might look sharp with the former and unacceptably mushy with the latter.

We quantify resolution by measuring detail contrast after it has been inevitably smeared by the imaging process.  As detail becomes smaller and closer together in the image, the blurred darker and lighter parts start mixing together until the relative contrast decreases to the point that it disappears, a limit referred to as  diffraction extinction, beyond which all detail is lost and no additional spatial information can be captured from the scene.

Sinusoidal target of increasing frequency to diffraction limit extinction
Increasingly small detail smeared by the imaging process, highly magnified.

The units of resolution are spatial frequencies, the inverse of the size and distance of the detail in question.  Of course at diffraction extinction no visual information is captured, therefore in most cases the criteria for usability are set by larger detail than that – or equivalently at lower frequencies.  Thresholds tend to be application specific and arbitrary.

The type of resolution being measured must also be specified since the term can be applied to different physical quantities: sensor, spatial, temporal, spectral, type of light, medium etc.  In photography we are normally interested in Spatial Resolution from incoherent light traveling in air so that will be the focus here.

Continue reading What is Resolution?

The Nikon Z7’s Insane Sharpness

Ever since getting a Nikon Z7 MILC a few months ago I have been literally blown away by the level of sharpness it produces.   I thought that my surprise might be the result of moving up from 24 to 45.7MP, or the excellent pin-point focusing mode, or the lack of an Antialiasing filter.  Well, it turns out that there is probably more at work than that.

This weekend I pulled out the largest cutter blade I could find and set it up rough and tumble near vertically about 10 meters away  to take a peek at what the MTF curves that produce such sharp results might look like.

Continue reading The Nikon Z7’s Insane Sharpness

Taking the Sharpness Model for a Spin

The series of articles starting here outlines a model of how the various physical components of a digital camera and lens can affect the ‘sharpness’ – that is the spatial resolution – of the  images captured in the raw data.  In this one we will pit the model against MTF curves obtained through the slanted edge method[1] from real world raw captures both with and without an anti-aliasing filter.

With a few simplifying assumptions, which include ignoring aliasing and phase, the spatial frequency response (SFR or MTF) of a photographic digital imaging system near the center can be expressed as the product of the Modulation Transfer Function of each component in it.  For a current digital camera these would typically be the main ones:

(1)   \begin{equation*} MTF_{sys} = MTF_{lens} (\cdot MTF_{AA}) \cdot MTF_{pixel} \end{equation*}

all in two dimensions Continue reading Taking the Sharpness Model for a Spin

Combining Bayer CFA Modulation Transfer Functions – I

In this and the following article I will discuss my thoughts on how MTF50 results obtained from  raw data of the four Bayer CFA color channels off  a neutral target captured with a typical camera through the slanted edge method can be combined to provide a meaningful composite MTF50 for the imaging system as a whole.   The perimeter of the discussion are neutral slanted edge measurements of Bayer CFA raw data for linear spatial resolution  (‘sharpness’) photographic hardware evaluations.  Corrections, suggestions and challenges are welcome. Continue reading Combining Bayer CFA Modulation Transfer Functions – I

The Slanted Edge Method

My preferred method for measuring the spatial resolution performance of photographic equipment these days is the slanted edge method.  It requires a minimum amount of additional effort compared to capturing and simply eye-balling a pinch, Siemens or other chart but it gives more, useful, accurate, quantitative information in the language and units that have been used to characterize optical systems for over a century: it produces a good approximation to  the Modulation Transfer Function of the two dimensional camera/lens system impulse response – at the location of the edge in the direction perpendicular to it.

Much of what there is to know about an imaging system’s spatial resolution performance can be deduced by analyzing its MTF curve, which represents the system’s ability to capture increasingly fine detail from the scene, starting from perceptually relevant metrics like MTF50, discussed a while back.

In fact the area under the curve weighted by some approximation of the Contrast Sensitivity Function of the Human Visual System is the basis for many other, better accepted single figure ‘sharpness‘ metrics with names like Subjective Quality Factor (SQF), Square Root Integral (SQRI), CMT Acutance, etc.   And all this simply from capturing the image of a slanted edge in a raw file, which one can actually and somewhat easily do at home, as presented in the next article.

Continue reading The Slanted Edge Method

How Sharp are my Camera and Lens?

You want to measure how sharp your camera/lens combination is to make sure it lives up to its specs.  Or perhaps you’d like to compare how well one lens captures spatial resolution compared to another  you own.  Or perhaps again you are in the market for new equipment and would like to know what could be expected from the shortlist.  Or an old faithful is not looking right and you’d like to check it out.   So you decide to do some testing.  Where to start?

In the next four articles I will walk you through my methodology based on captures of slanted edge targets:

  1. The setup (this one)
  2. Why you need to take raw captures
  3. The Slanted Edge method explained
  4. The software to obtain MTF curves

Continue reading How Sharp are my Camera and Lens?