Tag Archives: signal to noise ratio

Pi HQ Cam Sensor Performance

Now that we know how to open 12-bit raw files captured with the new Raspberry Pi High Quality Camera, we can learn a bit more about the capabilities of its 1/2.3″ Sony IMX477 sensor from a keen photographer’s perspective.  The subject is a bit dry, so I will give you the summary upfront.  These figures were obtained with my HQ module at room temperature and the raspistill – -raw (-r) command:

Raspberry Pi
HQ Camera
raspistill
--raw -ag 1
Comments
Black Level256.3 DN256.0 - 257.3 based on gain
White Level4095Constant throughout
Analog Gain1Gain Range 1 - 16
Read Noise3 e-, gain 1
1.5 e-, gain 16
1.53 DN from black frame
11.50 DN
Clipping (FWC)8180 e-at base gain, 3400e-/um^2
Dynamic Range11.15 stops
11.3 stops
SNR = 1 to Clipping
Read Noise to Clipping
System Gain0.47 DN/e-at base analog gain
Star Eater AlgorithmPartly DefeatableAll channels - from base gain and from min shutter speed
Low Pass FilterYesAll channels - from base gain and from min shutter speed

Continue reading Pi HQ Cam Sensor Performance

Information Transfer – The ISO Invariant Case

We know that the best Information Quality possible collected from the scene by a digital camera is available right at the output of the sensor and it will only be degraded from there.  This article will discuss what happens to this information as it is transferred through the imaging system and stored in the raw data.  It will use the simple language outlined in the last post to explain how and why the strategy for Capturing the best Information or Image Quality (IQ) possible from the scene in the raw data involves only two simple steps:

1) Maximizing the collected Signal given artistic and technical constraints; and
2) Choosing what part of the Signal to store in the raw data and what part to leave behind.

The second step is only necessary  if your camera is incapable of storing the entire Signal at once (that is it is not ISO invariant) and will be discussed in a future article.  In this post we will assume an ISOless imaging system.

Continue reading Information Transfer – The ISO Invariant Case

Information Theory for Photographers

Ever since Einstein we’ve been able to say that humans ‘see’ because information about the scene is carried to the eyes by photons reflected by it.  So when we talk about Information in photography we are referring to information about the energy and distribution of photons arriving from the scene.   The more complete this information, the better we ‘see’.  No photons = no information = no see; few photons = little information = see poorly = poor IQ; more photons = more information = see better = better IQ.

Sensors in digital cameras work similarly, their output ideally being the energy and location of every photon incident on them during Exposure. That’s the full information ideally required to recreate an exact image of the original scene for the human visual system, no more and no less. In practice however we lose some of this information along the way during sensing, so we need to settle for approximate location and energy – in the form of photoelectron counts by pixels of finite area, often correlated to a color filter array.

Continue reading Information Theory for Photographers

Determining Sensor IQ Metrics: RN, FWC, PRNU, DR, gain – 1

We’ve seen how to model sensors and how to collect signal and noise statistics from the raw data of our digital cameras.  In this post I am going to pull both things together allowing us to estimate sensor IQ metrics: input-referred read noise, clipping/saturation/Full Well Count, Dynamic Range, Pixel Response Non-Uniformities and gain/sensitivity.

There are several ways to extract these metrics from signal and noise data obtained from a camera’s raw file.  I will show two related ones: via SNR in this post and via total noise N in the next.  The procedure is similar and the results are identical.

Continue reading Determining Sensor IQ Metrics: RN, FWC, PRNU, DR, gain – 1

Sensor IQ’s Simple Model

Imperfections in an imaging system’s capture process manifest themselves in the form of deviations from the expected signal.  We call these imperfections ‘noise’ because they introduce grain and artifacts in our images.   The fewer the imperfections, the lower the noise, the higher the image quality.

However, because the Human Visual System is adaptive within its working range, it’s not the absolute amount of noise that matters to perceived Image Quality (IQ) as much as the amount of noise relative to the signal – represented for instance by the Signal to Noise Ratio (SNR). That’s why to characterize the performance of a sensor in addition to signal and noise we also need to determine its sensitivity and the maximum signal it can detect.

In this series of articles I will describe how to use the Photon Transfer method and a spreadsheet to determine basic IQ performance metrics of a digital camera sensor.  It is pretty easy if we keep in mind the simple model of how light information is converted into raw data by digital cameras:

Sensor photons to DN A
Figure 1.

Continue reading Sensor IQ’s Simple Model

SNR Curves and IQ in Digital Cameras

In photography the higher the ratio of Signal to Noise, the less grainy the final image normally looks.  The Signal-to-Noise-ratio SNR is therefore a key component of Image Quality.  Let’s take a closer look at it. Continue reading SNR Curves and IQ in Digital Cameras

Equivalence and Equivalent Image Quality: Signal

One of the fairest ways to compare the performance of two cameras of different physical characteristics and specifications is to ask a simple question: which photograph would look better if the cameras were set up side by side, captured identical scene content and their output were then displayed and viewed at the same size?

Achieving this set up and answering the question is anything but intuitive because many of the variables involved, like depth of field and sensor size, are not those we are used to dealing with when taking photographs.  In this post I would like to attack this problem by first estimating the output signal of different cameras when set up to capture Equivalent images.

It’s a bit long so I will give you the punch line first:  digital cameras of the same generation set up equivalently will typically generate more or less the same signal in e^- independently of format.  Ignoring noise, lenses and aspect ratio for a moment and assuming the same camera gain and number of pixels, they will produce identical raw files. Continue reading Equivalence and Equivalent Image Quality: Signal