Tag Archives: sharpening

The Richardson-Lucy Algorithm

Deconvolution by the Richardson-Lucy algorithm is achieved by minimizing the convex loss function derived in the last article

(1)   \begin{equation*} J(O) = \sum \bigg (O**PSF - I\cdot ln(O**PSF) \bigg) \end{equation*}

with

  • J, the scalar quantity to minimize, function of ideal image O(x,y)
  • I(x,y), linear captured image intensity laid out in M rows and N columns, corrupted by Poisson noise and blurred by the PSF
  • PSF(x,y), the known two-dimensional Point Spread Function that should be deconvolved out of I
  • O(x,y), the output image resulting from deconvolution, ideally without shot noise and blurring introduced by the PSF
  • **   two-dimensional convolution
  • \cdot   element-wise product
  • ln, element-wise natural logarithm

In what follows indices x and y, from zero to M-1 and N-1 respectively, are dropped for readability.  Articles about algorithms are by definition dry so continue at your own peril.

So, given captured raw image I blurred by known function PSF, how do we find the minimum value of J yielding the deconvolved image O that we are after?

Continue reading The Richardson-Lucy Algorithm

Why Raw Sharpness IQ Measurements Are Better

Why Raw?  The question is whether one is interested in measuring the objective, quantitative spatial resolution capabilities of the hardware or whether instead one would prefer to measure the arbitrary, qualitatively perceived sharpening prowess of (in-camera or in-computer) processing software as it turns the capture into a pleasing final image.  Either is of course fine.

My take on this is that the better the IQ captured the better the final image will be after post processing.  In other words I am typically more interested in measuring the spatial resolution information produced by the hardware comfortable in the knowledge that if I’ve got good quality data to start with its appearance will only be improved in post by the judicious use of software.  By IQ here I mean objective, reproducible, measurable physical quantities representing the quality of the information captured by the hardware, ideally in scientific units.

Can we do that off a file rendered by a raw converter or, heaven forbid, a Jpeg?  Not quite, especially if the objective is measuring IQ. Continue reading Why Raw Sharpness IQ Measurements Are Better

How Sharp are my Camera and Lens?

You want to measure how sharp your camera/lens combination is to make sure it lives up to its specs.  Or perhaps you’d like to compare how well one lens captures spatial resolution compared to another  you own.  Or perhaps again you are in the market for new equipment and would like to know what could be expected from the shortlist.  Or an old faithful is not looking right and you’d like to check it out.   So you decide to do some testing.  Where to start?

In the next four articles I will walk you through my methodology based on captures of slanted edge targets:

  1. The setup (this one)
  2. Why you need to take raw captures
  3. The Slanted Edge method explained
  4. The software to obtain MTF curves

Continue reading How Sharp are my Camera and Lens?

Deconvolution PSF Changes with Aperture

We have  seen in the previous post how the radius for deconvolution capture sharpening by a Gaussian PSF can be estimated for a given setup in well behaved and characterized camera systems.  Some parameters like pixel aperture and AA strength should remain stable for a camera/prime lens combination as f-numbers are increased (aperture is decreased) from about f/5.6 on up – the f/stops dear to Full Frame landscape photographers.  But how should the radius for generic Gaussian deconvolution  change as the f-number increases from there? Continue reading Deconvolution PSF Changes with Aperture

What Radius to Use for Deconvolution Capture Sharpening

The following approach will work if you know the spatial frequency at which a certain MTF relative energy level (e.g. MTF50) is achieved by your camera/lens combination as set up at the time that the capture was taken.

The process by which our hardware captures images and stores them  in the raw data inevitably blurs detail information from the scene. Continue reading What Radius to Use for Deconvolution Capture Sharpening

Deconvolution vs USM Capture Sharpening

UnSharp Masking (USM) capture sharpening is somewhat equivalent to taking a black/white marker and drawing along every transition in the picture to make it stand out more – automatically.  Line thickness and darkness is chosen arbitrarily to achieve the desired effect, much like painters do. Continue reading Deconvolution vs USM Capture Sharpening