Tag Archives: sfr

What is Resolution?

In photography Resolution refers to the ability of an imaging system to capture fine detail from the scene, making it a key determinant of Image Quality.  For instance, with high resolution equipment we might be able to count the number of tiny leaves on a distant tree, while we might not with a lower-res one.  Or the leaves might look sharp with the former and unacceptably mushy with the latter.

We quantify resolution by measuring detail contrast after it has been inevitably smeared by the imaging process.  As detail becomes smaller and closer together in the image, the blurred darker and lighter parts start mixing together until the relative contrast decreases to the point that it disappears, a limit referred to as  diffraction extinction, beyond which all detail is lost and no additional spatial information can be captured from the scene.

Sinusoidal target of increasing frequency to diffraction limit extinction
Increasingly small detail smeared by the imaging process, highly magnified.

The units of resolution are spatial frequencies, the inverse of the size and distance of the detail in question.  Of course at diffraction extinction no visual information is captured, therefore in most cases the criteria for usability are set by larger detail than that – or equivalently at lower frequencies.  Thresholds tend to be application specific and arbitrary.

The type of resolution being measured must also be specified since the term can be applied to different physical quantities: sensor, spatial, temporal, spectral, type of light, medium etc.  In photography we are normally interested in Spatial Resolution from incoherent light traveling in air so that will be the focus here.

Continue reading What is Resolution?

Introduction to Texture MTF

Texture MTF is a method to measure the sharpness of a digital camera and lens by capturing the image of a target of known characteristics.  It purports to better evaluate the perception of fine details in low contrast areas of the image – what is referred to as ‘texture’ – in the presence of noise reduction, sharpening or other non-linear processing performed by the camera before writing data to file.

Figure 1. Image of Dead Leaves low contrast target. Such targets are designed to have controlled scale and direction invariant features with a power law Power Spectrum.

The Modulation Transfer Function (MTF) of an imaging system represents its spatial frequency response,  from which many metrics related to perceived sharpness are derived: MTF50, SQF, SQRI, CMT Acutance etc.  In these pages we have used to good effect the slanted edge method to obtain accurate estimates of a system’s MTF curves in the past.[1]

In this article we will explore proposed methods to determine Texture MTF and/or estimate the Optical Transfer Function of the imaging system under test from a reference power-law Power Spectrum target.  All three rely on variations of the ratio of captured to reference image in the frequency domain: straight Fourier Transforms; Power Spectral Density; and Cross Power Density.  In so doing we will develop some intuitions about their strengths and weaknesses. Continue reading Introduction to Texture MTF

Fourier Optics and the Complex Pupil Function

In the last article we learned that a complex lens can be modeled as just an entrance pupil, an exit pupil and a geometrical optics black-box in between.  Goodman[1] suggests that all optical path errors for a given Gaussian point on the image plane can be thought of as being introduced by a custom phase plate at the pupil plane, delaying or advancing the light wavefront locally according to aberration function \Delta W(u,v) as earlier described.

The phase plate distorts the forming wavefront, introducing diffraction and aberrations, while otherwise allowing us to treat the rest of the lens as if it followed geometrical optics rules.  It can be associated with either the entrance or the exit pupil.  Photographers are usually concerned with the effects of the lens on the image plane so we will associate it with the adjacent Exit Pupil.

aberrations coded as phase plate in exit pupil generalized complex pupil function
Figure 1.  Aberrations can be fully described by distortions introduced by a fictitious phase plate inserted at the uv exit pupil plane.  The phase error distribution is the same as the path length error described by wavefront aberration function ΔW(u,v), introduced in the previous article.

Continue reading Fourier Optics and the Complex Pupil Function

Capture Sharpening: Estimating Lens PSF

The next few articles will outline the first tiny few steps towards achieving perfect capture sharpening, that is deconvolution of an image by the Point Spread Function (PSF) of the lens used to capture it.  This is admittedly  a complex subject, fraught with a myriad ever changing variables even in a lab, let alone in the field.  But studying it can give a glimpse of the possibilities and insights into the processes involved.

I will explain the steps I followed and show the resulting images and measurements.  Jumping the gun, the blue line below represents the starting system Spatial Frequency Response (SFR)[1], the black one unattainable/undesirable perfection and the orange one the result of part of the process outlined in this series.

Figure 1. Spatial Frequency Response of the imaging system before and after Richardson-Lucy deconvolution by the PSF of the lens that captured the original image.

Continue reading Capture Sharpening: Estimating Lens PSF

Taking the Sharpness Model for a Spin – II

This post  will continue looking at the spatial frequency response measured by MTF Mapper off slanted edges in DPReview.com raw captures and relative fits by the ‘sharpness’ model discussed in the last few articles.  The model takes the physical parameters of the digital camera and lens as inputs and produces theoretical directional system MTF curves comparable to measured data.  As we will see the model seems to be able to simulate these systems well – at least within this limited set of parameters.

The following fits refer to the green channel of a number of interchangeable lens digital camera systems with different lenses, pixel sizes and formats – from the current Medium Format 100MP champ to the 1/2.3″ 18MP sensor size also sometimes found in the best smartphones.  Here is the roster with the cameras as set up:

Table 1. The cameras and lenses under test.

Continue reading Taking the Sharpness Model for a Spin – II

Taking the Sharpness Model for a Spin

The series of articles starting here outlines a model of how the various physical components of a digital camera and lens can affect the ‘sharpness’ – that is the spatial resolution – of the  images captured in the raw data.  In this one we will pit the model against MTF curves obtained through the slanted edge method[1] from real world raw captures both with and without an anti-aliasing filter.

With a few simplifying assumptions, which include ignoring aliasing and phase, the spatial frequency response (SFR or MTF) of a photographic digital imaging system near the center can be expressed as the product of the Modulation Transfer Function of each component in it.  For a current digital camera these would typically be the main ones:

(1)   \begin{equation*} MTF_{sys} = MTF_{lens} (\cdot MTF_{AA}) \cdot MTF_{pixel} \end{equation*}

all in two dimensions Continue reading Taking the Sharpness Model for a Spin

A Simple Model for Sharpness in Digital Cameras – Polychromatic Light

We now know how to calculate the two dimensional Modulation Transfer Function of a perfect lens affected by diffraction, defocus and third order Spherical Aberration  – under monochromatic light at the given wavelength and f-number.  In digital photography however we almost never deal with light of a single wavelength.  So what effect does an illuminant with a wide spectral power distribution, going through the color filter of a typical digital camera CFA  before the sensor have on the spatial frequency responses discussed thus far?

Monochrome vs Polychromatic Light

Not much, it turns out. Continue reading A Simple Model for Sharpness in Digital Cameras – Polychromatic Light

A Simple Model for Sharpness in Digital Cameras – Spherical Aberrations

Spherical Aberration (SA) is one key component missing from our MTF toolkit for modeling an ideal imaging system’s ‘sharpness’ in the center of the field of view in the frequency domain.  In this article formulas will be presented to compute the two dimensional Point Spread and Modulation Transfer Functions of the combination of diffraction, defocus and third order Spherical Aberration for an otherwise perfect lens with a circular aperture.

Spherical Aberrations result because most photographic lenses are designed with quasi spherical surfaces that do not necessarily behave ideally in all situations.  For instance, they may focus light on systematically different planes depending on whether the respective ray goes through the exit pupil closer or farther from the optical axis, as shown below:

371px-spherical_aberration_2
Figure 1. Top: an ideal spherical lens focuses all rays on the same focal point. Bottom: a practical lens with Spherical Aberration focuses rays that go through the exit pupil based on their radial distance from the optical axis. Image courtesy Andrei Stroe.

Continue reading A Simple Model for Sharpness in Digital Cameras – Spherical Aberrations

A Simple Model for Sharpness in Digital Cameras – Sampling & Aliasing

Having shown that our simple two dimensional MTF model is able to predict the performance of the combination of a perfect lens and square monochrome pixel with 100% Fill Factor we now turn to the effect of the sampling interval on spatial resolution according to the guiding formula:

(1)   \begin{equation*} MTF_{Sys2D} = \left|(\widehat{ PSF_{lens} }\cdot \widehat{PIX_{ap} })\right|_{pu}\ast\ast\: \delta\widehat{\delta_{pitch}} \end{equation*}

The hats in this case mean the Fourier Transform of the relative component normalized to 1 at the origin (_{pu}), that is the individual MTFs of the perfect lens PSF, the perfect square pixel and the delta grid;  ** represents two dimensional convolution.

Sampling in the Spatial Domain

While exposed a pixel sees the scene through its aperture and accumulates energy as photons arrive.  Below left is the representation of, say, the intensity that a star projects on the sensing plane, in this case resulting in an Airy pattern since we said that the lens is perfect.  During exposure each pixel integrates (counts) the arriving photons, an operation that mathematically can be expressed as the convolution of the shown Airy pattern with a square, the size of effective pixel aperture, here assumed to have 100% Fill Factor.  It is the convolution in the continuous spatial domain of lens PSF with pixel aperture PSF shown in Equation (2) of the first article in the series.

Sampling is then the product of an infinitesimally small Dirac delta function at the center of each pixel, the red dots below left, by the result of the convolution, producing the sampled image below right.

Footprint-PSF3
Figure 1. Left, 1a: A highly zoomed (3200%) image of the lens PSF, an Airy pattern, projected onto the imaging plane where the sensor sits. Pixels shown outlined in yellow. A red dot marks the sampling coordinates. Right, 1b: The sampled image zoomed at 16000%, 5x as much, because in this example each pixel’s width is 5 linear units on the side.

Continue reading A Simple Model for Sharpness in Digital Cameras – Sampling & Aliasing

A Simple Model for Sharpness in Digital Cameras – Diffraction and Pixel Aperture

Now that we know from the introductory article that the spatial frequency response of a typical perfect digital camera and lens (its Modulation Transfer Function) can be modeled simply as the product of the Fourier Transform of the Point Spread Function of the lens and pixel aperture, convolved with a Dirac delta grid at cycles-per-pixel pitch spacing

(1)   \begin{equation*} MTF_{Sys2D} = \left|\widehat{ PSF_{lens} }\cdot \widehat{PIX_{ap} }\right|_{pu}\ast\ast\: \delta\widehat{\delta_{pitch}} \end{equation*}

we can take a closer look at each of those components (pu here indicating normalization to one at the origin).   I used Matlab to generate the examples below but you can easily do the same with a spreadsheet.   Continue reading A Simple Model for Sharpness in Digital Cameras – Diffraction and Pixel Aperture

A Simple Model for Sharpness in Digital Cameras – I

The next few posts will describe a linear spatial resolution model that can help a photographer better understand the main variables involved in evaluating the ‘sharpness’ of photographic equipment and related captures.   I will show numerically that the combined spectral frequency response (MTF) of a perfect AAless monochrome digital camera and lens in two dimensions can be described as the magnitude of the normalized product of the Fourier Transform (FT) of the lens Point Spread Function by the FT of the pixel footprint (aperture), convolved with the FT of a rectangular grid of Dirac delta functions centered at each  pixel:

    \[ MTF_{2D} = \left|\widehat{ PSF_{lens} }\cdot \widehat{PIX_{ap} }\right|_{pu}\ast\ast\: \delta\widehat{\delta_{pitch}} \]

With a few simplifying assumptions we will see that the effect of the lens and sensor on the spatial resolution of the continuous image on the sensing plane can be broken down into these simple components.  The overall ‘sharpness’ of the captured digital image can then be estimated by combining the ‘sharpness’ of each of them.

The stage will be set in this first installment with a little background and perfect components.  Later additional detail will be provided to take into account pixel aperture and Anti-Aliasing filters.  Then we will look at simple aberrations.  Next we will learn how to measure MTF curves for our equipment, and look at numerical methods to model PSFs and MTFs from the wavefront at the aperture. Continue reading A Simple Model for Sharpness in Digital Cameras – I

COMBINING BAYER CFA MTF Curves – II

In this and the previous article I discuss how Modulation Transfer Functions (MTF) obtained from every color channel of a Bayer CFA raw capture in isolation can be combined to provide a meaningful composite MTF curve for the imaging system as a whole.

There are two ways that this can be accomplished: an input-referred approach (L) that reflects the performance of the hardware only; and an output-referred one (Y) that also takes into consideration how the image will be displayed.  Both are valid and differences are typically minor, though the weights of the latter are scene, camera/lens, illuminant dependent – while the former are not.  Therefore my recommendation in this context is to stick with input-referred weights when comparing cameras and lenses.1 Continue reading COMBINING BAYER CFA MTF Curves – II

Downsizing Algorithms: Effects on Resolution

Most of the photographs captured these days end up being viewed on a display of some sort, with at best 4K (4096×2160) but often no better than HD resolution (1920×1080).  Since the cameras that capture them have typically several times that number of pixels, 6000×4000 being fairly normal today, most images need to be substantially downsized for viewing, even allowing for some cropping.  Resizing algorithms built into browsers or generic image viewers tend to favor expediency over quality, so it behooves the IQ conscious photographer to manage the process, choosing the best image size and downsampling algorithm for the intended file and display medium.

When downsizing the objective is to maximize the original spatial resolution retained while minimizing the possibility of aliasing and moirè.  In this article we will take a closer look at some common downsizing algorithms and their effect on spatial resolution information in the frequency domain.

Continue reading Downsizing Algorithms: Effects on Resolution

MTF Mapper vs sfrmat3

Over the last couple of years I’ve been using Frans van den Bergh‘s excellent open source MTF Mapper to measure the Modulation Transfer Function of imaging systems off a slanted edge target, as you may have seen in these pages.  As long as one understands how to get the most out of it I find it a solid product that gives reliable results, with MTF50 typically well within 2% of actual in less than ideal real-world situations (see below).  I had little to compare it to other than to tests published by gear testing sites:  they apparently mostly use a commercial package called Imatest for their slanted edge readings – and it seemed to correlate well with those.

Then recently Jim Kasson pointed out sfrmat3, the matlab program written by Peter Burns who is a slanted edge method expert who worked at Kodak and was a member of the committee responsible for ISO12233, the resolution and spatial frequency response standard for photography.  sfrmat3 is considered to be a solid implementation of the standard and many, including Imatest, benchmark against it – so I was curious to see how MTF Mapper 0.4.1.6 would compare.  It did well.

Continue reading MTF Mapper vs sfrmat3

How to Get MTF Performance Curves for Your Camera and Lens

You have obtained a raw file containing the image of a slanted edge  captured with good technique.  How do you get the Modulation Transfer Function of the camera and lens combination that took it?  Download and feast your eyes on open source MTF Mapper version 0.4.16 by Frans van den Bergh.

[Edit, several years later: MTF Mapper has kept improving over time, making it in my opinion the most accurate slanted edge measuring tool available today, used in applications that range from photography to machine vision to the Mars Rover.   Did I mention that it is open source?

It now sports a Graphical User Interface which can load raw files and allow the arbitrary selection of individual edges by simply pointing and clicking, making this post largely redundant.  The procedure outlined will still work but there are easier ways to accomplish the same task today.  To obtain the same result with raw data and version 0.7.38 just install MTF Mapper, set the “Settings/Preferences” tab as follows and leave all else at default:

“Pixel size” is only needed to also show SFR in units of lp/mm and the “Arguments” field only if using an unspecified raw data CFA layout.  “Accept” and “File/Open with manual edge selection” your raw files.  Follow the instructions to select as many edges as desired.  Then in “Data set” open an “annotated” file and shift-click on the chosen edges to see the relative MTF plots.]

The first thing we are going to do is crop the edges and package them into a TIFF file format so that MTF Mapper has an easier time reading them.  Let’s use as an example a Nikon D810+85mm:1.8G ISO 64 studio raw capture by DPReview so that you can follow along if you wish.   Continue reading How to Get MTF Performance Curves for Your Camera and Lens

The Slanted Edge Method

My preferred method for measuring the spatial resolution performance of photographic equipment these days is the slanted edge method.  It requires a minimum amount of additional effort compared to capturing and simply eye-balling a pinch, Siemens or other chart but it gives more, useful, accurate, quantitative information in the language and units that have been used to characterize optical systems for over a century: it produces a good approximation to  the Modulation Transfer Function of the two dimensional camera/lens system impulse response – at the location of the edge in the direction perpendicular to it.

Much of what there is to know about an imaging system’s spatial resolution performance can be deduced by analyzing its MTF curve, which represents the system’s ability to capture increasingly fine detail from the scene, starting from perceptually relevant metrics like MTF50, discussed a while back.

In fact the area under the curve weighted by some approximation of the Contrast Sensitivity Function of the Human Visual System is the basis for many other, better accepted single figure ‘sharpness‘ metrics with names like Subjective Quality Factor (SQF), Square Root Integral (SQRI), CMT Acutance, etc.   And all this simply from capturing the image of a slanted edge, which one can actually and somewhat easily do at home, as presented in the next article.

Continue reading The Slanted Edge Method