Tag Archives: polynomials

Minimalist ESF, LSF, MTF by Monotonic Regression

Because the Slanted Edge Method of estimating the Spectral Frequency Response of a camera and lens is one of the more popular articles on this site, I have fielded variations on the following question many times over the past ten years:

How do you go from the intensity cloud  produced by the projection of a slanted edge captured in a raw file to a good estimate of the relevant Line Spread Function?

Figure 1.  Slanted edge captured in the raw data and projected to the edge normal.  The data noisy because of shot noise and PRNU.  How to estimate the underlying edge profile (orange line, the Edge Spread Function)?

So I decided to write down the answer that I have settled on.  It relies on monotone spline regression to obtain an Edge Spread Function (ESF) and then reuses the parameters of the regression to infer the relative regularized Line Spread Function (LSF) analytically in one go.

This front-loads all uncertainty to just the estimation of the ESF since the other steps on the way to the SFR become purely mechanical.  In addition the monotonicity constraint puts some guardrails around the curve, keeping it on the straight and narrow without further effort.

This minimalist, what-you-see-is-what-you-get approach gets around the usual need for signal conditioning such as binning, finite difference calculations and other filtering, with their drawbacks and compensations.  It has the potential to be further refined so consider it a hot-rod DIY kit.  Even so it is an intuitively direct implementation of the method and it provides strong validation for Frans van den Bergh’s open source MTF Mapper, the undisputed king in this space,[1] as it produces very similar results with raw slanted edge captures. Continue reading Minimalist ESF, LSF, MTF by Monotonic Regression

Fourier Optics and the Complex Pupil Function

In the last article we learned that a complex lens can be modeled as just an entrance pupil, an exit pupil and a geometrical optics black-box in between.  Goodman[1] suggests that all optical path errors for a given Gaussian point on the image plane can be thought of as being introduced by a custom phase plate at the pupil plane, delaying or advancing the light wavefront locally according to aberration function \Delta W(u,v) as earlier described.

The phase plate distorts the forming wavefront, introducing diffraction and aberrations, while otherwise allowing us to treat the rest of the lens as if it followed geometrical optics rules.  It can be associated with either the entrance or the exit pupil.  Photographers are usually concerned with the effects of the lens on the image plane so we will associate it with the adjacent Exit Pupil.

aberrations coded as phase plate in exit pupil generalized complex pupil function
Figure 1.  Aberrations can be fully described by distortions introduced by a fictitious phase plate inserted at the uv exit pupil plane.  The phase error distribution is the same as the path length error described by wavefront aberration function ΔW(u,v), introduced in the previous article.

Continue reading Fourier Optics and the Complex Pupil Function

An Introduction to Pupil Aberrations

As discussed in the previous article, so far we have assumed ideal optics, with spherical wavefronts propagating into and out of the lens’ Entrance and Exit pupils respectively.  That would only be true if there were no aberrations. In that case the photon distribution within the pupils would be uniform and such an optical system would be said to be diffraction limited.

Figure 1.   Optics as a black box, fully described for our purposes by its terminal properties at the Entrance and Exit pupils.  A horrible attempt at perspective by your correspondent: the Object, Pupils and Image planes should all be parallel and share the optical axis z.

On the other hand if lens imperfections, aka aberrations, were present the photon distribution in the Exit Pupil would be distorted, thus unable to form a perfectly  spherical wavefront out of it, with consequences for the intensity distribution of photons reaching the image.

Either pupil can be used to fully describe the light collection and concentration characteristics of a lens.  In imaging we are typically interested in what happens after the lens so we will choose to associate the performance of the optics with the Exit Pupil. Continue reading An Introduction to Pupil Aberrations

Pupils and Apertures

We’ve seen in the last article that the job of an ideal photographic lens is simple: to receive photons from a set of directions bounded by a spherical cone with its apex at a point on the object; and to concentrate them in directions bounded  by a spherical cone with its apex at the corresponding point on the image.   In photography both cones are assumed to be in air.

In this article we will distill the photon collecting and distributing function of a complex lens down to its terminal properties, the Entrance and Exit Pupils, allowing us to deal with any lens simply and consistently. Continue reading Pupils and Apertures

Capture Sharpening: Estimating Lens PSF

The next few articles will outline the first tiny few steps towards achieving perfect capture sharpening, that is deconvolution of an image by the Point Spread Function (PSF) of the lens used to capture it.  This is admittedly  a complex subject, fraught with a myriad ever changing variables even in a lab, let alone in the field.  But studying it can give a glimpse of the possibilities and insights into the processes involved.

I will explain the steps I followed and show the resulting images and measurements.  Jumping the gun, the blue line below represents the starting system Spatial Frequency Response (SFR)[1], the black one unattainable/undesirable perfection and the orange one the result of part of the process outlined in this series.

Figure 1. Spatial Frequency Response of the imaging system before and after Richardson-Lucy deconvolution by the PSF of the lens that captured the original image.

Continue reading Capture Sharpening: Estimating Lens PSF