Tag Archives: photoelectrons

Photons, Shot Noise and Poisson Processes

Every digital photographer soon discovers that there are three main sources of visible random noise that affect pictures taken in normal conditions: Shot, pixel response non-uniformities (PRNU) and Read noise.[1]

Shot noise (sometimes referred to as Photon Shot Noise or Photon Noise) we learn is ‘inherent in light’; PRNU is per pixel gain variation proportional to light, mainly affecting the brighter portions of our pictures; Read Noise is instead independent of light, introduced by the electronics and visible in the darker shadows.  You can read in this earlier post a little more detail on how they interact.

Read Noise Shot Photon PRNU Photo Resonse Non Uniformity

However, shot noise is omnipresent and arguably the dominant source of visible noise in typical captures.  This article’s objective is to  dig deeper into the sources of Shot Noise that we see in our photographs: is it really ‘inherent in the incoming light’?  What about if the incoming light went through clouds or was reflected by some object at the scene?  And what happens to the character of the noise as light goes through the lens and is turned into photoelectrons by a pixel’s photodiode?

Fish, dear reader, fish and more fish.

Continue reading Photons, Shot Noise and Poisson Processes

Pi HQ Cam Sensor Performance

Now that we know how to open 12-bit raw files captured with the new Raspberry Pi High Quality Camera, we can learn a bit more about the capabilities of its 1/2.3″ Sony IMX477 sensor from a keen photographer’s perspective.  The subject is a bit dry, so I will give you the summary upfront.  These figures were obtained with my HQ module at room temperature and the raspistill – -raw (-r) command:

Raspberry Pi
HQ Camera
raspistill
--raw -ag 1
Comments
Black Level256.3 DN256.0 - 257.3 based on gain
White Level4095Constant throughout
Analog Gain1Gain Range 1 - 16
Read Noise3 e-, gain 1
1.5 e-, gain 16
1.53 DN from black frame
11.50 DN
Clipping (FWC)8180 e-at base gain, 3400e-/um^2
Dynamic Range11.15 stops
11.3 stops
SNR = 1 to Clipping
Read Noise to Clipping
System Gain0.47 DN/e-at base analog gain
Star Eater AlgorithmPartly DefeatableAll channels - from base gain and from min shutter speed
Low Pass FilterYesAll channels - from base gain and from min shutter speed

Continue reading Pi HQ Cam Sensor Performance

Equivalence and Equivalent Image Quality: Signal

One of the fairest ways to compare the performance of two cameras of different physical characteristics and specifications is to ask a simple question: which photograph would look better if the cameras were set up side by side, captured identical scene content and their output were then displayed and viewed at the same size?

Achieving this set up and answering the question is anything but intuitive because many of the variables involved, like depth of field and sensor size, are not those we are used to dealing with when taking photographs.  In this post I would like to attack this problem by first estimating the output signal of different cameras when set up to capture Equivalent images.

It’s a bit long so I will give you the punch line first:  digital cameras of the same generation set up equivalently will typically generate more or less the same signal in e^- independently of format.  Ignoring noise, lenses and aspect ratio for a moment and assuming the same camera gain and number of pixels, they will produce identical raw files. Continue reading Equivalence and Equivalent Image Quality: Signal