Tag Archives: optical transfer function

Introduction to Texture MTF

Texture MTF is a method to measure the sharpness of a digital camera and lens by capturing the image of a target of known characteristics.  It purports to better evaluate the perception of fine details in low contrast areas of the image – what is referred to as ‘texture’ – in the presence of noise reduction, sharpening or other non-linear processing performed by the camera before writing data to file.

Figure 1. Image of Dead Leaves low contrast target. Such targets are designed to have controlled scale and direction invariant features with a power law Power Spectrum.

The Modulation Transfer Function (MTF) of an imaging system represents its spatial frequency response,  from which many metrics related to perceived sharpness are derived: MTF50, SQF, SQRI, CMT Acutance etc.  In these pages we have used to good effect the slanted edge method to obtain accurate estimates of a system’s MTF curves in the past.[1]

In this article we will explore proposed methods to determine Texture MTF and/or estimate the Optical Transfer Function of the imaging system under test from a reference power-law Power Spectrum target.  All three rely on variations of the ratio of captured to reference image in the frequency domain: straight Fourier Transforms; Power Spectral Density; and Cross Power Density.  In so doing we will develop some intuitions about their strengths and weaknesses. Continue reading Introduction to Texture MTF

Fourier Optics and the Complex Pupil Function

In the last article we learned that a complex lens can be modeled as just an entrance pupil, an exit pupil and a geometrical optics black-box in between.  Goodman[1] suggests that all optical path errors for a given Gaussian point on the image plane can be thought of as being introduced by a custom phase plate at the pupil plane, delaying or advancing the light wavefront locally according to aberration function \Delta W(u,v) as earlier described.

The phase plate distorts the forming wavefront, introducing diffraction and aberrations, while otherwise allowing us to treat the rest of the lens as if it followed geometrical optics rules.  It can be associated with either the entrance or the exit pupil.  Photographers are usually concerned with the effects of the lens on the image plane so we will associate it with the adjacent Exit Pupil.

aberrations coded as phase plate in exit pupil generalized complex pupil function
Figure 1.  Aberrations can be fully described by distortions introduced by a fictitious phase plate inserted at the uv exit pupil plane.  The phase error distribution is the same as the path length error described by wavefront aberration function ΔW(u,v), introduced in the previous article.

Continue reading Fourier Optics and the Complex Pupil Function

Wavefront to PSF to MTF: Physical Units

In the last article we saw that the intensity Point Spread Function and the Modulation Transfer Function of a lens could be easily approximated numerically by applying Discrete Fourier Transforms to its generalized exit pupil function \mathcal{P} twice in sequence.[1]

Numerical Fourier Optics: amplitude Point Spread Function, intensity PSF and MTF

Obtaining the 2D DFTs is easy: simply feed MxN numbers representing the two dimensional complex image of the Exit Pupil function in its uv space to a Fast Fourier Transform routine and, presto, it produces MxN numbers representing the amplitude of the PSF on the xy sensing plane.  Figure 1a shows a simple case where pupil function \mathcal{P} is a uniform disk representing the circular aperture of a perfect lens with MxN = 1024×1024.  Figure 1b is the resulting intensity PSF.

Figure 1a, left: A circular array of ones appearing as a white disk on a black background, representing a circular aperture. Figure 1b, right: Array of numbers representing the PSF of image 1a in the classic shape of an Airy Pattern.
Figure 1. 1a Left: Array of numbers representing a circular aperture (zeros for black and ones for white).  1b Right: Array of numbers representing the PSF of image 1a (contrast slightly boosted).

Simple and fast.  Wonderful.  Below is a slice through the center, the 513th row, zoomed in.  Hmm….  What are the physical units on the axes of displayed data produced by the DFT? Continue reading Wavefront to PSF to MTF: Physical Units

Aberrated Wave to Image Intensity to MTF

Goodman, in his excellent Introduction to Fourier Optics[1], describes how an image is formed on a camera sensing plane starting from first principles, that is electromagnetic propagation according to Maxwell’s wave equation.  If you want the play by play account I highly recommend his math intensive book.  But for the budding photographer it is sufficient to know what happens at the Exit Pupil of the lens because after that the transformations to Point Spread and Modulation Transfer Functions are straightforward, as we will show in this article.

The following diagram exemplifies the last few millimeters of the journey that light from the scene has to travel in order to be absorbed by a camera’s sensing medium.  Light from the scene in the form of  field  U arrives at the front of the lens.  It goes through the lens being partly blocked and distorted by it as it arrives at its virtual back end, the Exit Pupil, we’ll call this blocking/distorting function P.   Other than in very simple cases, the Exit Pupil does not necessarily coincide with a specific physical element or Principal surface.[iv]  It is a convenient mathematical construct which condenses all of the light transforming properties of a lens into a single plane.

The complex light field at the Exit Pupil’s two dimensional uv plane is then  U\cdot P as shown below (not to scale, the product of the two arrays is element-by-element):

Figure 1. Simplified schematic diagram of the space between the exit pupil of a camera lens and its sensing plane. The space is assumed to be filled with air.

Continue reading Aberrated Wave to Image Intensity to MTF

The Units of Discrete Fourier Transforms

This article is about specifying the units of the Discrete Fourier Transform of an image and the various ways that they can be expressed.  This apparently simple task can be fiendishly unintuitive.

The image we will use as an example is the familiar Airy Pattern from the last few posts, at f/16 with light of mean 530nm wavelength. Zoomed in to the left in Figure 1; and as it looks in its 1024×1024 sample image to the right:

Airy Mesh and Intensity
Figure 1. Airy disc image I(x,y). Left, 1a, 3D representation, zoomed in. Right, 1b, as it would appear on the sensing plane (yes, the rings are there but you need to squint to see them).

Continue reading The Units of Discrete Fourier Transforms