Tag Archives: optical path difference

Fourier Optics and the Complex Pupil Function

In the last article we learned that a complex lens can be modeled as just an entrance pupil, an exit pupil and a geometrical optics black-box in between.  Goodman[1] suggests that all optical path errors for a given Gaussian point on the image plane can be thought of as being introduced by a custom phase plate at the pupil plane, delaying or advancing the light wavefront locally according to aberration function \Delta W(u,v) as earlier described.

The phase plate distorts the forming wavefront, introducing diffraction and aberrations, while otherwise allowing us to treat the rest of the lens as if it followed geometrical optics rules.  It can be associated with either the entrance or the exit pupil.  Photographers are usually concerned with the effects of the lens on the image plane so we will associate it with the adjacent Exit Pupil.

aberrations coded as phase plate in exit pupil generalized complex pupil function
Figure 1.  Aberrations can be fully described by distortions introduced by a fictitious phase plate inserted at the uv exit pupil plane.  The phase error distribution is the same as the path length error described by wavefront aberration function ΔW(u,v), introduced in the previous article.

Continue reading Fourier Optics and the Complex Pupil Function

An Introduction to Pupil Aberrations

As discussed in the previous article, so far we have assumed ideal optics, with spherical wavefronts propagating into and out of the lens’ Entrance and Exit pupils respectively.  That would only be true if there were no aberrations. In that case the photon distribution within the pupils would be uniform and such an optical system would be said to be diffraction limited.

Figure 1.   Optics as a black box, fully described for our purposes by its terminal properties at the Entrance and Exit pupils.  A horrible attempt at perspective by your correspondent: the Object, Pupils and Image planes should all be parallel and share the optical axis z.

On the other hand if lens imperfections, aka aberrations, were present the photon distribution in the Exit Pupil would be distorted, thus unable to form a perfectly  spherical wavefront out of it, with consequences for the intensity distribution of photons reaching the image.

Either pupil can be used to fully describe the light collection and concentration characteristics of a lens.  In imaging we are typically interested in what happens after the lens so we will choose to associate the performance of the optics with the Exit Pupil. Continue reading An Introduction to Pupil Aberrations

Pupils and Apertures

We’ve seen in the last article that the job of an ideal photographic lens is simple: to receive photons from a set of directions bounded by a spherical cone with its apex at a point on the object; and to concentrate them in directions bounded  by a spherical cone with its apex at the corresponding point on the image.   In photography both cones are assumed to be in air.

In this article we will distill the photon collecting and distributing function of a complex lens down to its terminal properties, the Entrance and Exit Pupils, allowing us to deal with any lens simply and consistently. Continue reading Pupils and Apertures

Taking the Sharpness Model for a Spin

The series of articles starting here outlines a model of how the various physical components of a digital camera and lens can affect the ‘sharpness’ – that is the spatial resolution – of the  images captured in the raw data.  In this one we will pit the model against MTF curves obtained through the slanted edge method[1] from real world raw captures both with and without an anti-aliasing filter.

With a few simplifying assumptions, which include ignoring aliasing and phase, the spatial frequency response (SFR or MTF) of a photographic digital imaging system near the center can be expressed as the product of the Modulation Transfer Function of each component in it.  For a current digital camera these would typically be the main ones:

(1)   \begin{equation*} MTF_{sys} = MTF_{lens} (\cdot MTF_{AA}) \cdot MTF_{pixel} \end{equation*}

all in two dimensions Continue reading Taking the Sharpness Model for a Spin

A Simple Model for Sharpness in Digital Cameras – Defocus

This series of articles has dealt with modeling an ideal imaging system’s ‘sharpness’ in the frequency domain.  We looked at the effects of the hardware on spatial resolution: diffraction, sampling interval, sampling aperture (e.g. a squarish pixel), anti-aliasing OLPAF filters.  The next two posts will deal with modeling typical simple imperfections related to the lens: defocus and spherical aberrations.

Defocus = OOF

Defocus means that the sensing plane is not exactly where it needs to be for image formation in our ideal imaging system: the image is therefore out of focus (OOF).  Said another way, light from a point source would go through the lens but converge either behind or in front of the sensing plane, as shown in the following diagram, for a lens with a circular aperture:

Figure 1. Back Focus, In Focus, Front Focus.
Figure 1. Top to bottom: Back Focus, In Focus, Front Focus.  To the right is how the relative PSF would look like on the sensing plane.  Image under license courtesy of Brion.

Continue reading A Simple Model for Sharpness in Digital Cameras – Defocus

Focus Tolerance and Format Size

The key variable as far as the tolerances required to position the lens for accurate focus are concerned (at least in a simplified ideal situation) is an appropriate approximate distance between the desired in-focus plane and the actual in-focus plane (which we are assuming is slightly out of focus). It is a distance in the direction perpendicular to the x-y plane normally used to describe position of the image on it, hence the designation delta z, or dz in this post.  The lens’ allowable focus tolerance is therefore  +/- dz, which we will show in this post to vary as the square of the format’s diagonal. Continue reading Focus Tolerance and Format Size