Tag Archives: octave

Fourier Optics and the Complex Pupil Function

In the last article we learned that a complex lens can be modeled as just an entrance pupil, an exit pupil and a geometrical optics black-box in between.  Goodman[1] suggests that all optical path errors for a given Gaussian point on the image plane can be thought of as being introduced by a custom phase plate at the pupil plane, delaying or advancing the light wavefront locally according to aberration function \Delta W(u,v) as earlier described.

The phase plate distorts the forming wavefront, introducing diffraction and aberrations, while otherwise allowing us to treat the rest of the lens as if it followed geometrical optics rules.  It can be associated with either the entrance or the exit pupil.  Photographers are usually concerned with the effects of the lens on the image plane so we will associate it with the adjacent Exit Pupil.

aberrations coded as phase plate in exit pupil generalized complex pupil function
Figure 1.  Aberrations can be fully described by distortions introduced by a fictitious phase plate inserted at the uv exit pupil plane.  The phase error distribution is the same as the path length error described by wavefront aberration function ΔW(u,v), introduced in the previous article.

Continue reading Fourier Optics and the Complex Pupil Function

Off Balance

In this article we confirm quantitatively that getting the White Point, hence the White Balance, right is essential to obtaining natural tones out of our captures.  How quickly do colors degrade if the estimated Correlated Color Temperature is off?

Continue reading Off Balance

A Question of Balance

In this article I bring together qualitatively the main concepts discussed in the series and argue that in many (most) cases a  photographer’s job in order to obtain natural looking tones in their work during raw conversion is to get the illuminant and relative white balance right – and to step away from any slider found in menus with the word ‘color’ in them.

Figure 1. DON’T touch them color dials (including Tint)! courtesy of Capture One

If you are an outdoor photographer trying to get balanced greens under an overcast sky – or a portrait photographer after good skin tones – dialing in the appropriate scene, illuminant and white balance puts the camera/converter manufacturer’s color science to work and gets you most of the way there safely.  Of course the judicious photographer always knew to do that – hopefully now with a better appreciation as for why.

Continue reading A Question of Balance

White Point, CCT and Tint

As we have seen in the previous post, knowing the characteristics of light at the scene is critical to be able to determine the color transform that will allow captured raw data to be naturally displayed from an output color space like ubiquitous sRGB.

White Point

The light source Spectral Power Distribution (SPD) corresponds to a unique White Point, namely a set of coordinates in the XYZ color space, obtained by multiplying wavelength-by-wavelength its SPD (the blue curve below) by the Color Matching Functions of a Standard Observer (\hat{x},\hat{y},\hat{z})

Figure 1.  Spectral Power Distribution of Standard Daylight Illuminant D5300 with a Correlated Color Temperature of  5300 deg. K; and CIE (2012) 2-deg XYZ “physiologically relevant” Color Matching Functions from cvrl.org.

Adding (integrating) the three resulting curves up we get three values that represent the illuminant’s coordinates in the XYZ color space.  The White Point is then obtained by dividing these coordinates by the Y value to normalize it to 1.

The White Point is then seen to be independent of the intensity of the arriving light, as Y represents Luminance from the scene.   For instance a Standard Daylight Illuminant with a Correlated Color Temperature of 5300k has a White Point of[1]

XYZn = [0.9593 1.0000 0.8833] Continue reading White Point, CCT and Tint

Linear Color Transforms

Building on a preceeding article of this series, once demosaiced raw data from a Bayer Color Filter Array sensor represents the captured image as a set of triplets, corresponding to the estimated light intensity at a given pixel under each of the three spectral filters part of the CFA.   The filters are band-pass and named for the representative peak wavelength that they let through, typically red, green, blue or r, g, b for short.

Since the resulting intensities are linearly independent they can form the basis of a 3D coordinate system, with each rgb triplet representing a point within it.  The system is bounded in the raw data by the extent of the Analog to Digital Converter, with all three channels spanning the same range, from Black Level with no light to clipping with maximum recordable light.  Therefore it can be thought to represent a space in the form of a cube – or better, a parallelepiped – with the origin at [0,0,0] and the opposite vertex at the clipping value in Data Numbers, expressed as [1,1,1] if we normalize all data by it.

Figure 1. The linear sRGB Cube, courtesy of Matlab toolbox Optprop.

The job of the color transform is to project demosaiced raw data rgb to a standard output RGB color space designed for viewing.   Such spaces have names like sRGB, Adobe RGB or Rec. 2020 .  The output space can also be shown in 3D as a parallelepiped with the origin at [0,0,0] with no light and the opposite vertex at [1,1,1] with maximum displayable light. Continue reading Linear Color Transforms

Opening Raspberry Pi High Quality Camera Raw Files

The Raspberry Pi Foundation recently released an interchangeable lens camera module based on the Sony  IMX477, a 1/2.3″ back side illuminated sensor with 3040×4056 pixels of 1.55um pitch.  In this somewhat technical article we will unpack the 12-bit raw still data that it produces and render it in a convenient color space.

still life raw capture data file raspberry pi high quality hq cam f/8 1/2s base analog gain iso adobe rgb
Figure 1. 12-bit raw capture by Raspberry Pi High Quality Camera with 16 mm kit lens at f/8, 1/2 s, base ISO. The image was loaded into Matlab and rendered Half Height Nearest Neighbor in the Adobe RGB color space with a touch of local contrast and sharpening.  Click on it to see it in its own tab and view it at 100% magnification. If your browser is not color managed you may not see colors properly.

Continue reading Opening Raspberry Pi High Quality Camera Raw Files

The HV Spectrogram

A spectrogram, also sometimes referred to as a periodogram, is  a visual representation of the Power Spectrum of a signal.  Power Spectrum answers the question “How much power is contained in the frequency components of the signal”. In digital photography a Power Spectrum can show the relative strength of repeating patterns in captures and whether processing has been applied.

In this article I will describe how you can construct a spectrogram and how to interpret it, using dark field raw images taken with the lens cap on as an example.  This can tell us much about the performance of our imaging devices in the darkest shadows and how well tuned their sensors are there.

Pixel level noise spectrum
Figure 1. Horizontal and Vertical Spectrogram of noise captured in the raw data by a Nikon Z7 at base ISO with  the lens cap on.  The plot shows clear evidence of low-pass filtering in the blue CFA color plane and pattern noise repeating every 6 rows there and in one of the green ones.

Continue reading The HV Spectrogram

Capture Sharpening: Estimating Lens PSF

The next few articles will outline the first tiny few steps towards achieving perfect capture sharpening, that is deconvolution of an image by the Point Spread Function (PSF) of the lens used to capture it.  This is admittedly  a complex subject, fraught with a myriad ever changing variables even in a lab, let alone in the field.  But studying it can give a glimpse of the possibilities and insights into the processes involved.

I will explain the steps I followed and show the resulting images and measurements.  Jumping the gun, the blue line below represents the starting system Spatial Frequency Response (SFR)[1], the black one unattainable/undesirable perfection and the orange one the result of part of the process outlined in this series.

Figure 1. Spatial Frequency Response of the imaging system before and after Richardson-Lucy deconvolution by the PSF of the lens that captured the original image.

Continue reading Capture Sharpening: Estimating Lens PSF

A Just Noticeable Color Difference

While checking some out-of-gamut tones on an xy Chromaticity Diagram I started to wonder how far two tones needed to be in order for an observer to notice a difference.  Were the tones in the yellow and red clusters below discernible or would they be indistinguishable, all being perceived as the same ‘color’?

Figure 1. Samples off an image plotted on a typical xy Chromaticity diagram (black dots).

Continue reading A Just Noticeable Color Difference

Wavefront to PSF to MTF: Physical Units

In the last article we saw that the intensity Point Spread Function and the Modulation Transfer Function of a lens could be easily approximated numerically by applying Discrete Fourier Transforms to its generalized exit pupil function \mathcal{P} twice in sequence.[1]

Numerical Fourier Optics: amplitude Point Spread Function, intensity PSF and MTF

Obtaining the 2D DFTs is easy: simply feed MxN numbers representing the two dimensional complex image of the Exit Pupil function in its uv space to a Fast Fourier Transform routine and, presto, it produces MxN numbers representing the amplitude of the PSF on the xy sensing plane.  Figure 1a shows a simple case where pupil function \mathcal{P} is a uniform disk representing the circular aperture of a perfect lens with MxN = 1024×1024.  Figure 1b is the resulting intensity PSF.

Figure 1a, left: A circular array of ones appearing as a white disk on a black background, representing a circular aperture. Figure 1b, right: Array of numbers representing the PSF of image 1a in the classic shape of an Airy Pattern.
Figure 1. 1a Left: Array of numbers representing a circular aperture (zeros for black and ones for white).  1b Right: Array of numbers representing the PSF of image 1a (contrast slightly boosted).

Simple and fast.  Wonderful.  Below is a slice through the center, the 513th row, zoomed in.  Hmm….  What are the physical units on the axes of displayed data produced by the DFT? Continue reading Wavefront to PSF to MTF: Physical Units

Aberrated Wave to Image Intensity to MTF

Goodman, in his excellent Introduction to Fourier Optics[1], describes how an image is formed on a camera sensing plane starting from first principles, that is electromagnetic propagation according to Maxwell’s wave equation.  If you want the play by play account I highly recommend his math intensive book.  But for the budding photographer it is sufficient to know what happens at the Exit Pupil of the lens because after that the transformations to Point Spread and Modulation Transfer Functions are straightforward, as we will show in this article.

The following diagram exemplifies the last few millimeters of the journey that light from the scene has to travel in order to be absorbed by a camera’s sensing medium.  Light from the scene in the form of  field  U arrives at the front of the lens.  It goes through the lens being partly blocked and distorted by it as it arrives at its virtual back end, the Exit Pupil, we’ll call this blocking/distorting function P.   Other than in very simple cases, the Exit Pupil does not necessarily coincide with a specific physical element or Principal surface.[iv]  It is a convenient mathematical construct which condenses all of the light transforming properties of a lens into a single plane.

The complex light field at the Exit Pupil’s two dimensional uv plane is then  U\cdot P as shown below (not to scale, the product of the two arrays is element-by-element):

Figure 1. Simplified schematic diagram of the space between the exit pupil of a camera lens and its sensing plane. The space is assumed to be filled with air.

Continue reading Aberrated Wave to Image Intensity to MTF

Linear Color: Applying the Forward Matrix

Now that we know how to create a 3×3 linear matrix to convert white balanced and demosaiced raw data into XYZ_{D50}  connection space – and where to obtain the 3×3 linear matrix to then convert it to a standard output color space like sRGB – we can take a closer look at the matrices and apply them to a real world capture chosen for its wide range of chromaticities.

Figure 1. Image with color converted using the forward linear matrix discussed in the article.

Continue reading Linear Color: Applying the Forward Matrix

Color: Determining a Forward Matrix for Your Camera

We understand from the previous article that rendering color with Adobe DNG raw conversion essentially means mapping raw data in the form of rgb triplets into a standard color space via a Profile Connection Space in a two step process

    \[ Raw Data \rightarrow  XYZ_{D50} \rightarrow RGB_{standard} \]

The first step white balances and demosaics the raw data, which at that stage we will refer to as rgb, followed by converting it to XYZ_{D50} Profile Connection Space through linear projection by an unknown ‘Forward Matrix’ (as DNG calls it) of the form

(1)   \begin{equation*} \left[ \begin{array}{c} X_{D50} \\ Y_{D50} \\ Z_{D50} \end{array} \right] = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \left[ \begin{array}{c} r \\ g \\ b \end{array} \right] \end{equation*}

with data as column-vectors in a 3xN array.  Determining the nine a coefficients of this matrix M is the main subject of this article[1]. Continue reading Color: Determining a Forward Matrix for Your Camera

How Is a Raw Image Rendered?

What are the basic low level steps involved in raw file conversion?  In this article I will discuss what happens under the hood of digital camera raw converters in order to turn raw file data into a viewable image, a process sometimes referred to as ‘rendering’.  We will use the following raw capture by a Nikon D610 to show how image information is transformed at every step along the way:

Nikon D610 with AF-S 24-120mm f/4 lens at 24mm f/8 ISO100, minimally rendered from raw as outlined in the article.
Figure 1. Nikon D610 with AF-S 24-120mm f/4 lens at 24mm f/8 ISO100, minimally rendered from raw by Octave/Matlab following the steps outlined in the article.

Rendering = Raw Conversion + Editing

Continue reading How Is a Raw Image Rendered?

Photographic Sensor Simulation

Physicists and mathematicians over the last few centuries have spent a lot of their time studying light and electrons, the key ingredients of digital photography.  In so doing they have left us with a wealth of theories to explain their behavior in nature and in our equipment.  In this article I will describe how to simulate the information generated by a uniformly illuminated imaging system using open source Octave (or equivalently Matlab) utilizing some of these theories.

Since as you will see the simulations are incredibly (to me) accurate, understanding how the simulator works goes a long way in explaining the inner workings of a digital sensor at its lowest levels; and simulated data can be used to further our understanding of photographic science without having to run down the shutter count of our favorite SLRs.  This approach is usually referred to as Monte Carlo simulation.

Continue reading Photographic Sensor Simulation

How Many Photons on a Pixel at a Given Exposure

How many photons impinge on a pixel illuminated by a known light source during exposure?  To answer this question in a photographic context under daylight we need to know the effective area of the pixel, the Spectral Power Distribution of the illuminant and the relative Exposure.

We can typically estimate the pixel’s effective area and the Spectral Power Distribution of the illuminant – so all we need to determine is what Exposure the relative irradiance corresponds to in order to obtain the answer.

Continue reading How Many Photons on a Pixel at a Given Exposure

Photons Emitted by Light Source

How many photons are emitted by a light source? To answer this question we need to evaluate the following simple formula at every wavelength in the spectral range of interest and add the values up:

(1)   \begin{equation*} \frac{\text{Power of Light in }W/m^2}{\text{Energy of Average Photon in }J/photon} \end{equation*}

The Power of Light emitted in W/m^2 is called Spectral Exitance, with the symbol M_e(\lambda) when referred to  units of energy.  The energy of one photon at a given wavelength is

(2)   \begin{equation*} e_{ph}(\lambda) = \frac{hc}{\lambda}\text{    joules/photon} \end{equation*}

with \lambda the wavelength of light in meters and h and c Planck’s constant and the speed of light in the chosen medium respectively.  Since Watts are joules per second the units of (1) are therefore photons/m^2/s.  Writing it more formally:

(3)   \begin{equation*} M_{ph} = \int\limits_{\lambda_1}^{\lambda_2} \frac{M_e(\lambda)\cdot \lambda \cdot d\lambda}{hc} \text{  $\frac{photons}{m^2\cdot s}$} \end{equation*}

Continue reading Photons Emitted by Light Source