Tag Archives: intensity

Fourier Optics and the Complex Pupil Function

In the last article we learned that a complex lens can be modeled as just an entrance pupil, an exit pupil and a geometrical optics black-box in between.  Goodman[1] suggests that all optical path errors for a given Gaussian point on the image plane can be thought of as being introduced by a custom phase plate at the pupil plane, delaying or advancing the light wavefront locally according to aberration function \Delta W(u,v) as earlier described.

The phase plate distorts the forming wavefront, introducing diffraction and aberrations, while otherwise allowing us to treat the rest of the lens as if it followed geometrical optics rules.  It can be associated with either the entrance or the exit pupil.  Photographers are usually concerned with the effects of the lens on the image plane so we will associate it with the adjacent Exit Pupil.

aberrations coded as phase plate in exit pupil generalized complex pupil function
Figure 1.  Aberrations can be fully described by distortions introduced by a fictitious phase plate inserted at the uv exit pupil plane.  The phase error distribution is the same as the path length error described by wavefront aberration function ΔW(u,v), introduced in the previous article.

Continue reading Fourier Optics and the Complex Pupil Function

Off Balance

In this article we confirm quantitatively that getting the White Point, hence the White Balance, right is essential to obtaining natural tones out of our captures.  How quickly do colors degrade if the estimated Correlated Color Temperature is off?

Continue reading Off Balance

A Question of Balance

In this article I bring together qualitatively the main concepts discussed in the series and argue that in many (most) cases a  photographer’s job in order to obtain natural looking tones in their work during raw conversion is to get the illuminant and relative white balance right – and to step away from any slider found in menus with the word ‘color’ in them.

Figure 1. DON’T touch them color dials (including Tint)! courtesy of Capture One

If you are an outdoor photographer trying to get balanced greens under an overcast sky – or a portrait photographer after good skin tones – dialing in the appropriate scene, illuminant and white balance puts the camera/converter manufacturer’s color science to work and gets you most of the way there safely.  Of course the judicious photographer always knew to do that – hopefully now with a better appreciation as for why.

Continue reading A Question of Balance

White Point, CCT and Tint

As we have seen in the previous post, knowing the characteristics of light at the scene is critical to be able to determine the color transform that will allow captured raw data to be naturally displayed from an output color space like ubiquitous sRGB.

White Point

The light source Spectral Power Distribution (SPD) corresponds to a unique White Point, namely a set of coordinates in the XYZ color space, obtained by multiplying wavelength-by-wavelength its SPD (the blue curve below) by the response of the retina of a typical viewer, otherwise known as the CIE Color Matching Functions of a Standard Observer (\hat{x},\hat{y},\hat{z} in the plot)

Figure 1.  Spectral Power Distribution of Standard Daylight Illuminant D5300 with a Correlated Color Temperature of  5300 deg. K; and CIE (2012) 2-deg XYZ “physiologically relevant” Color Matching Functions from cvrl.org.

Adding (integrating) the three resulting curves we get three values that represent the illuminant’s coordinates in the XYZ color space.  The White Point is obtained by dividing these coordinates by the Y value to normalize it to 1.

For example a Standard Daylight Illuminant with a Correlated Color Temperature of 5300 kelvins has a White Point of[1]

XYZn = [0.9593 1.0000 0.8833]

assuming CIE (2012) 2-deg XYZ “physiologically relevant” Color Matching Functions from cvrl.org. Continue reading White Point, CCT and Tint

Linear Color Transforms

Building on a preceeding article of this series, once demosaiced raw data from a Bayer Color Filter Array sensor represents the captured image as a set of triplets, corresponding to the estimated light intensity at a given pixel under each of the three spectral filters part of the CFA.   The filters are band-pass and named for the representative peak wavelength that they let through, typically red, green, blue or r, g, b for short.

Since the resulting intensities are linearly independent they can form the basis of a 3D coordinate system, with each rgb triplet representing a point within it.  The system is bounded in the raw data by the extent of the Analog to Digital Converter, with all three channels spanning the same range, from Black Level with no light to clipping with maximum recordable light.  Therefore it can be thought to represent a space in the form of a cube – or better, a parallelepiped – with the origin at [0,0,0] and the opposite vertex at the clipping value in Data Numbers, expressed as [1,1,1] if we normalize all data by it.

Figure 1. The linear sRGB Cube, courtesy of Matlab toolbox Optprop.

The job of the color transform is to project demosaiced raw data rgb to a standard output RGB color space designed for viewing.   Such spaces have names like sRGB, Adobe RGB or Rec. 2020 .  The output space can also be shown in 3D as a parallelepiped with the origin at [0,0,0] with no light and the opposite vertex at [1,1,1] with maximum displayable light. Continue reading Linear Color Transforms

Connecting Photographic Raw Data to Tristimulus Color Science

Absolute Raw Data

In the previous article we determined that the three r_{_L}g_{_L}b_{_L} values recorded in the raw data in the center of the image plane in units of Data Numbers per pixel – by a digital camera and lens as a function of absolute spectral radiance L(\lambda) at the lens – can be estimated as follows:

(1)   \begin{equation*} r_{_L}g_{_L}b_{_L} =\frac{\pi p^2 t}{4N^2} \int\limits_{380}^{780}L(\lambda) \odot SSF_{rgb}(\lambda)  d\lambda \end{equation*}

with subscript _L indicating absolute-referred units and SSF_{rgb} the three system Spectral Sensitivity Functions.   In this series of articles \odot is wavelength by wavelength multiplication (what happens to the spectrum of light as it progresses through the imaging system) and the integral just means the area under each of the three resulting curves (integration is what the pixels do during exposure).  Together they represent an inner or dot product.  All variables in front of the integral were previously described and can be considered constant for a given photographic setup. Continue reading Connecting Photographic Raw Data to Tristimulus Color Science

Pi HQ Cam Sensor Performance

Now that we know how to open 12-bit raw files captured with the new Raspberry Pi High Quality Camera, we can learn a bit more about the capabilities of its 1/2.3″ Sony IMX477 sensor from a keen photographer’s perspective.  The subject is a bit dry, so I will give you the summary upfront.  These figures were obtained with my HQ module at room temperature and the raspistill – -raw (-r) command:

Raspberry Pi
HQ Camera
raspistill
--raw -ag 1
Comments
Black Level256.3 DN256.0 - 257.3 based on gain
White Level4095Constant throughout
Analog Gain1Gain Range 1 - 16
Read Noise3 e-, gain 1
1.5 e-, gain 16
1.53 DN from black frame
11.50 DN
Clipping (FWC)8180 e-at base gain, 3400e-/um^2
Dynamic Range11.15 stops
11.3 stops
SNR = 1 to Clipping
Read Noise to Clipping
System Gain0.47 DN/e-at base analog gain
Star Eater AlgorithmPartly DefeatableAll channels - from base gain and from min shutter speed
Low Pass FilterYesAll channels - from base gain and from min shutter speed

Continue reading Pi HQ Cam Sensor Performance

Diffracted DOF Aperture Guides: 24-35mm

As a landscape shooter I often wonder whether old rules for DOF still apply to current small pixels and sharp lenses. I therefore roughly measured  the spatial resolution performance of my Z7 with 24-70mm/4 S in the center to see whether ‘f/8 and be there’ still made sense today.  The journey and the diffraction-simple-aberration aware model were described in the last few posts.  The results are summarized in the Landscape Aperture-Distance charts presented here for the 24, 28 and 35mm focal lengths.

I also present the data in the form of a simplified plot to aid making the right compromises when the focusing distance is flexible.  This information is valid for the Z7 and kit in the center only.  It probably just as easily applies to cameras with similarly spec’d pixels and lenses. Continue reading Diffracted DOF Aperture Guides: 24-35mm

DOF and Diffraction: 24mm Guidelines

After an exhausting two and a half hour hike you are finally resting, sitting on a rock at the foot of your destination, a tiny alpine lake, breathing in the thin air and absorbing the majestic scenery.  A cool light breeze suddenly rips the surface of the water, morphing what has until now been a perfect reflection into an impressionistic interpretation of the impervious mountains in the distance.

The beautiful flowers in the foreground are so close you can touch them, the reflection in the water 10-20m away, the imposing mountains in the background a few hundred meters further out.  You realize you are hungry.  As you search the backpack for the two panini you prepared this morning you begin to ponder how best to capture the scene: subject,  composition, Exposure, Depth of Field.

Figure 1. A typical landscape situation: a foreground a few meters away, a mid-ground a few tens and a background a few hundred meters further out.  Three orders of magnitude.  The focus point was on the running dog, f/16, 1/100s.  Was this a good choice?

Depth of Field.  Where to focus and at what f/stop?  You tip your hat and just as you look up at the bluest of blue skies the number 16 starts enveloping your mind, like rays from the warm noon sun. You dial it in and as you squeeze the trigger that familiar nagging question bubbles up, as it always does in such conditions.  If this were a one shot deal, was that really the best choice?

In this article we attempt to provide information to make explicit some of the trade-offs necessary in the choice of Aperture for 24mm landscapes.  The result of the process is a set of guidelines.  The answers are based on the previously introduced diffraction-aware model for sharpness in the center along the depth of the field – and a tripod-mounted Nikon Z7 + Nikkor 24-70mm/4 S kit lens at 24mm.
Continue reading DOF and Diffraction: 24mm Guidelines

DOF and Diffraction: Setup

The two-thin-lens model for precision Depth Of Field estimates described in the last two articles is almost ready to be deployed.  In this one we will describe the setup that will be used to develop the scenarios that will be outlined in the next one.

The beauty of the hybrid geometrical-Fourier optics approach is that, with an estimate of the field produced at the exit pupil by an on-axis point source, we can generate the image of the resulting Point Spread Function and related Modulation Transfer Function.

Pretend that you are a photon from such a source in front of a f/2.8 lens focused at 10m with about 0.60 microns of third order spherical aberration – and you are about to smash yourself onto the ‘best focus’ observation plane of your camera.  Depending on whether you leave exactly from the in-focus distance of 10 meters or slightly before/after that, the impression you would leave on the sensing plane would look as follows:

Figure 1. PSF of a lens with about 0.6um of third order spherical aberration focused on 10m.

The width of the square above is 30 microns (um), which corresponds to the diameter of the Circle of Confusion used for old-fashioned geometrical DOF calculations with full frame cameras.  The first ring of the in-focus PSF at 10.0m has a diameter of about 2.44\lambda \frac{f}{D} = 3.65 microns.   That’s about the size of the estimated effective square pixel aperture of the Nikon Z7 camera that we are using in these tests.
Continue reading DOF and Diffraction: Setup

DOF and Diffraction: Image Side

This investigation of the effect of diffraction on Depth of Field is based on a two-thin-lens model, as suggested by Alan Robinson[1].  We chose this model because it allows us to associate geometrical optics with one lens and Fourier optics with the other, thus simplifying the underlying math and our understanding.

In the last article we discussed how the front element of the model could present at the rear element the wavefront resulting from an on-axis source as a function of distance from the lens.  We accomplished this by using simple geometry in complex notation.  In this one we will take the relative wavefront present at the exit pupil and project it onto the sensing plane, taking diffraction into account numerically.  We already know how to do it since we dealt with this subject in the recent past.

Figure 1. Where is the plane with the Circle of Least Confusion?  Through Focus Line Spread Function Image of a lens at f/2.8 with the indicated third order spherical aberration coefficient, and relative measures of ‘sharpness’ MTF50 and Acutance curves.  Acutance is scaled to the same peak as MTF50 for ease of comparison and refers to my typical pixel peeping conditions: 100% zoom, 16″ away from my 24″ monitor.

Continue reading DOF and Diffraction: Image Side

DOF and Diffraction: Object Side

In this and the following articles we shall explore the effects of diffraction on Depth of Field through a two-lens model that separates geometrical and Fourier optics in a way that keeps the math simple, though via complex notation.  In the process we will gain a better understanding of how lenses work.

The results of the model are consistent with what can be obtained via classic DOF calculators online but should be more precise in critical situations, like macro photography.  I am not a macro photographer so I would be interested in validation of the results of the explained method by someone who is.

Figure 1. Simple two-thin-lens model for DOF calculations in complex notation.  Adapted under licence.

Continue reading DOF and Diffraction: Object Side

Wavefront to PSF to MTF: Physical Units

In the last article we saw that the intensity Point Spread Function and the Modulation Transfer Function of a lens could be easily approximated numerically by applying Discrete Fourier Transforms to its generalized exit pupil function \mathcal{P} twice in sequence.[1]

Numerical Fourier Optics: amplitude Point Spread Function, intensity PSF and MTF

Obtaining the 2D DFTs is easy: simply feed MxN numbers representing the two dimensional complex image of the Exit Pupil function in its uv space to a Fast Fourier Transform routine and, presto, it produces MxN numbers representing the amplitude of the PSF on the xy sensing plane.  Figure 1a shows a simple case where pupil function \mathcal{P} is a uniform disk representing the circular aperture of a perfect lens with MxN = 1024×1024.  Figure 1b is the resulting intensity PSF.

Figure 1a, left: A circular array of ones appearing as a white disk on a black background, representing a circular aperture. Figure 1b, right: Array of numbers representing the PSF of image 1a in the classic shape of an Airy Pattern.
Figure 1. 1a Left: Array of numbers representing a circular aperture (zeros for black and ones for white).  1b Right: Array of numbers representing the PSF of image 1a (contrast slightly boosted).

Simple and fast.  Wonderful.  Below is a slice through the center, the 513th row, zoomed in.  Hmm….  What are the physical units on the axes of displayed data produced by the DFT? Continue reading Wavefront to PSF to MTF: Physical Units

Aberrated Wave to Image Intensity to MTF

Goodman, in his excellent Introduction to Fourier Optics[1], describes how an image is formed on a camera sensing plane starting from first principles, that is electromagnetic propagation according to Maxwell’s wave equation.  If you want the play by play account I highly recommend his math intensive book.  But for the budding photographer it is sufficient to know what happens at the Exit Pupil of the lens because after that the transformations to Point Spread and Modulation Transfer Functions are straightforward, as we will show in this article.

The following diagram exemplifies the last few millimeters of the journey that light from the scene has to travel in order to be absorbed by a camera’s sensing medium.  Light from the scene in the form of  field  U arrives at the front of the lens.  It goes through the lens being partly blocked and distorted by it as it arrives at its virtual back end, the Exit Pupil, we’ll call this blocking/distorting function P.   Other than in very simple cases, the Exit Pupil does not necessarily coincide with a specific physical element or Principal surface.[iv]  It is a convenient mathematical construct which condenses all of the light transforming properties of a lens into a single plane.

The complex light field at the Exit Pupil’s two dimensional uv plane is then  U\cdot P as shown below (not to scale, the product of the two arrays is element-by-element):

Figure 1. Simplified schematic diagram of the space between the exit pupil of a camera lens and its sensing plane. The space is assumed to be filled with air.

Continue reading Aberrated Wave to Image Intensity to MTF

A Simple Model for Sharpness in Digital Cameras – Spherical Aberrations

Spherical Aberration (SA) is one key component missing from our MTF toolkit for modeling an ideal imaging system’s ‘sharpness’ in the center of the field of view in the frequency domain.  In this article formulas will be presented to compute the two dimensional Point Spread and Modulation Transfer Functions of the combination of diffraction, defocus and third order Spherical Aberration for an otherwise perfect lens with a circular aperture.

Spherical Aberrations result because most photographic lenses are designed with quasi spherical surfaces that do not necessarily behave ideally in all situations.  For instance, they may focus light on systematically different planes depending on whether the respective ray goes through the exit pupil closer or farther from the optical axis, as shown below:

371px-spherical_aberration_2
Figure 1. Top: an ideal spherical lens focuses all rays on the same focal point. Bottom: a practical lens with Spherical Aberration focuses rays that go through the exit pupil based on their radial distance from the optical axis. Image courtesy Andrei Stroe.

Continue reading A Simple Model for Sharpness in Digital Cameras – Spherical Aberrations

COMBINING BAYER CFA MTF Curves – II

In this and the previous article I discuss how Modulation Transfer Functions (MTF) obtained from every color channel of a Bayer CFA raw capture in isolation can be combined to provide a meaningful composite MTF curve for the imaging system as a whole.

There are two ways that this can be accomplished: an input-referred approach (L) that reflects the performance of the hardware only; and an output-referred one (Y) that also takes into consideration how the image will be displayed.  Both are valid and differences are typically minor, though the weights of the latter are scene, camera/lens, illuminant dependent – while the former are not.  Therefore my recommendation in this context is to stick with input-referred weights when comparing cameras and lenses.1 Continue reading COMBINING BAYER CFA MTF Curves – II

The Units of Spatial Resolution

Several sites for photographers perform spatial resolution ‘sharpness’ testing of a specific lens and digital camera set up by capturing a target.  You can also measure your own equipment relatively easily to determine how sharp your hardware is.  However comparing results from site to site and to your own can be difficult and/or misleading, starting from the multiplicity of units used: cycles/pixel, line pairs/mm, line widths/picture height, line pairs/image height, cycles/picture height etc.

This post will address the units involved in spatial resolution measurement using as an example readings from the popular slanted edge method, although their applicability is generic.

Continue reading The Units of Spatial Resolution