Tag Archives: information transfer

Information Transfer: Non ISO-Invariant Case

We’ve seen how information about a photographic scene is collected in the ISOless/invariant range of a digital camera sensor, amplified, converted to digital data and stored in a raw file.  For a given Exposure the best information quality (IQ) about the scene is available right at the photosites, only possibly degrading from there – but a properly designed** fully ISO invariant imaging system is able to store it in its entirety in the raw data.  It is able to do so because the information carrying capacity (photographers would call it the dynamic range) of each subsequent stage is equal to or larger than the previous one.   Cameras that are considered to be (almost) ISOless from base ISO include the Nikon D7000, D7200 and the Pentax K5.  All digital cameras become ISO invariant above a certain ISO, the exact value determined by design compromises.

ToneTransferISOless100
Figure 1: Simplified Scene Information Transfer in an ISO Invariant Imaging System at base ISO

In this article we’ll look at a class of imagers that are not able to store the whole information available at the photosites in one go in the raw file for a substantial portion of their working ISOs.  The photographer can in such a case choose out of the full information available at the photosites what smaller subset of it to store in the raw data by the selection of different in-camera ISOs.  Such cameras are sometimes improperly referred to as ISOful. Most Canon DSLRs fall into this category today.  As do kings of darkness such as the Sony a7S or Nikon D5.

Continue reading Information Transfer: Non ISO-Invariant Case

Information Transfer – The ISO Invariant Case

We know that the best Information Quality possible collected from the scene by a digital camera is available right at the output of the sensor and it will only be degraded from there.  This article will discuss what happens to this information as it is transferred through the imaging system and stored in the raw data.  It will use the simple language outlined in the last post to explain how and why the strategy for Capturing the best Information or Image Quality (IQ) possible from the scene in the raw data involves only two simple steps:

1) Maximizing the collected Signal given artistic and technical constraints; and
2) Choosing what part of the Signal to store in the raw data and what part to leave behind.

The second step is only necessary  if your camera is incapable of storing the entire Signal at once (that is it is not ISO invariant) and will be discussed in a future article.  In this post we will assume an ISOless imaging system.

Continue reading Information Transfer – The ISO Invariant Case