Tag Archives: e-

Pi HQ Cam Sensor Performance

Now that we know how to open 12-bit raw files captured with the new Raspberry Pi High Quality Camera, we can learn a bit more about the capabilities of its 1/2.3″ Sony IMX477 sensor from a keen photographer’s perspective.  The subject is a bit dry, so I will give you the summary upfront.  These figures were obtained with my HQ module at room temperature and the raspistill – -raw (-r) command:

Raspberry Pi
HQ Camera
raspistill
--raw -ag 1
Comments
Black Level256.3 DN256.0 - 257.3 based on gain
White Level4095Constant throughout
Analog Gain1Gain Range 1 - 16
Read Noise3 e-, gain 1
1.5 e-, gain 16
1.53 DN from black frame
11.50 DN
Clipping (FWC)8180 e-at base gain, 3400e-/um^2
Dynamic Range11.15 stops
11.3 stops
SNR = 1 to Clipping
Read Noise to Clipping
System Gain0.47 DN/e-at base analog gain
Star Eater AlgorithmPartly DefeatableAll channels - from base gain and from min shutter speed
Low Pass FilterYesAll channels - from base gain and from min shutter speed

Continue reading Pi HQ Cam Sensor Performance

Sensor IQ’s Simple Model

Imperfections in an imaging system’s capture process manifest themselves in the form of deviations from the expected signal.  We call these imperfections ‘noise’ because they introduce grain and artifacts in our images.   The fewer the imperfections, the lower the noise, the higher the image quality.

However, because the Human Visual System is adaptive within its working range, it’s not the absolute amount of noise that matters to perceived Image Quality (IQ) as much as the amount of noise relative to the signal – represented for instance by the Signal to Noise Ratio (SNR). That’s why to characterize the performance of a sensor in addition to signal and noise we also need to determine its sensitivity and the maximum signal it can detect.

In this series of articles I will describe how to use the Photon Transfer method and a spreadsheet to determine basic IQ performance metrics of a digital camera sensor.  It is pretty easy if we keep in mind the simple model of how light information is converted into raw data by digital cameras:

Sensor photons to DN A
Figure 1.

Continue reading Sensor IQ’s Simple Model