Tag Archives: distribution

Photons, Shot Noise and Poisson Processes

Every digital photographer soon discovers that there are three main sources of visible random noise that affect pictures taken in normal conditions: Shot, pixel response non-uniformities (PRNU) and Read noise.[1]

Shot noise (sometimes referred to as Photon Shot Noise or Photon Noise) we learn is ‘inherent in light’; PRNU is per pixel gain variation proportional to light, mainly affecting the brighter portions of our pictures; Read Noise is instead independent of light, introduced by the electronics and visible in the darker shadows.  You can read in this earlier post a little more detail on how they interact.

Read Noise Shot Photon PRNU Photo Resonse Non Uniformity

However, shot noise is omnipresent and arguably the dominant source of visible noise in typical captures.  This article’s objective is to  dig deeper into the sources of Shot Noise that we see in our photographs: is it really ‘inherent in the incoming light’?  What about if the incoming light went through clouds or was reflected by some object at the scene?  And what happens to the character of the noise as light goes through the lens and is turned into photoelectrons by a pixel’s photodiode?

Fish, dear reader, fish and more fish.

Continue reading Photons, Shot Noise and Poisson Processes

Connecting Photographic Raw Data to Tristimulus Color Science

Absolute Raw Data

In the previous article we determined that the three r_{_L}g_{_L}b_{_L} values recorded in the raw data in the center of the image plane in units of Data Numbers per pixel – by a digital camera and lens as a function of absolute spectral radiance L(\lambda) at the lens – can be estimated as follows:

(1)   \begin{equation*} r_{_L}g_{_L}b_{_L} =\frac{\pi p^2 t}{4N^2} \int\limits_{380}^{780}L(\lambda) \odot SSF_{rgb}(\lambda)  d\lambda \end{equation*}

with subscript _L indicating absolute-referred units and SSF_{rgb} the three system Spectral Sensitivity Functions.   In this series of articles \odot is wavelength by wavelength multiplication (what happens to the spectrum of light as it progresses through the imaging system) and the integral just means the area under each of the three resulting curves (integration is what the pixels do during exposure).  Together they represent an inner or dot product.  All variables in front of the integral were previously described and can be considered constant for a given photographic setup. Continue reading Connecting Photographic Raw Data to Tristimulus Color Science

The Physical Units of Raw Data

In the previous article we (I) learned that the Spectral Sensitivity Functions of a given digital camera and lens are the result of the interaction of light from the scene with all of the spectrally varied components that make up the imaging system: mainly the lens, ultraviolet/infrared hot mirror, Color Filter Array and other filters, finally the photoelectric layer of the sensor, which is normally silicon in consumer kit.

Figure 1. The journey of light from source to sensor.  Cone Ω will play a starring role in the narrative that follows.

In this one we will put the process on a more formal theoretical footing, setting the stage for the next few on the role of white balance.

Continue reading The Physical Units of Raw Data

The Spectral Response of Digital Cameras

Photography works because visible light from one or more sources reaches the scene and is reflected in the direction of the camera, which then captures a signal proportional to it.  The journey of light can be described in integrated units of power all the way to the sensor, for instance so many watts per square meter. However ever since Newton we have known that such total power is in fact the result of the weighted sum of contributions by every frequency  that makes up the light, what he called its spectrum.

Our ability to see and record color depends on knowing the distribution of the power contained within a subset of these frequencies and how it interacts with the various objects in its path.  This article is about how a typical digital camera for photographers interacts with the spectrum arriving from the scene: we will dissect what is sometimes referred to as the system’s Spectral Response or Sensitivity.

Figure 1. Spectral Sensitivity Functions of an arbitrary imaging system, resulting from combining the responses of the various components described in the article.

Continue reading The Spectral Response of Digital Cameras

Canon’s High-Res Optical Low Pass Filter

Canon recently introduced its EOS-1D X Mark III Digital Single-Lens Reflex [Edit: and now also possibly the R5 Mirrorless ILC] touting a new and improved Anti-Aliasing filter, which they call a High-Res Gaussian Distribution LPF, claiming that

“This not only helps to suppress moiré and color distortion,
but also improves resolution.”

Figure 1. Artist’s rendition of new High-res Low Pass Filter, courtesy of Canon USA

In this article we will try to dissect the marketing speak and understand a bit better the theoretical implications of the new AA.  For the abridged version, jump to the Conclusions at the bottom.  In a picture:

Canon High-Res Anti-Aliasing filter
Figure 16: The less psychedelic, the better.

Continue reading Canon’s High-Res Optical Low Pass Filter

The Richardson-Lucy Algorithm

Deconvolution by the Richardson-Lucy algorithm is achieved by minimizing the convex loss function derived in the last article

(1)   \begin{equation*} J(O) = \sum \bigg (O**PSF - I\cdot ln(O**PSF) \bigg) \end{equation*}

with

  • J, the scalar quantity to minimize, function of ideal image O(x,y)
  • I(x,y), linear captured image intensity laid out in M rows and N columns, corrupted by Poisson noise and blurred by the PSF
  • PSF(x,y), the known two-dimensional Point Spread Function that should be deconvolved out of I
  • O(x,y), the output image resulting from deconvolution, ideally without shot noise and blurring introduced by the PSF
  • **   two-dimensional convolution
  • \cdot   element-wise product
  • ln, element-wise natural logarithm

In what follows indices x and y, from zero to M-1 and N-1 respectively, are dropped for readability.  Articles about algorithms are by definition dry so continue at your own peril.

So, given captured raw image I blurred by known function PSF, how do we find the minimum value of J yielding the deconvolved image O that we are after?

Continue reading The Richardson-Lucy Algorithm

Elements of Richardson-Lucy Deconvolution

We have seen that deconvolution by naive division in the frequency domain only works in ideal conditions not typically found in normal photographic settings, in part because of shot noise inherent in light from the scene. Half a century ago William Richardson (1972)[1] and Leon Lucy (1974)[2] independently came up with a better way to deconvolve blurring introduced by an imaging system in the presence of shot noise. Continue reading Elements of Richardson-Lucy Deconvolution