Tag Archives: deltaE

White Point, CCT and Tint

As we have seen in the previous post, knowing the characteristics of light at the scene is critical to be able to determine the color transform that will allow captured raw data to be naturally displayed from an output color space like ubiquitous sRGB.

White Point

The light source Spectral Power Distribution (SPD) corresponds to a unique White Point, namely a set of coordinates in the XYZ color space, obtained by multiplying wavelength-by-wavelength its SPD (the blue curve below) by the response of the retina of a typical viewer, otherwise known as the CIE Color Matching Functions of a Standard Observer (\hat{x},\hat{y},\hat{z} in the plot)

Figure 1.  Spectral Power Distribution of Standard Daylight Illuminant D5300 with a Correlated Color Temperature of  5300 deg. K; and CIE (2012) 2-deg XYZ “physiologically relevant” Color Matching Functions from cvrl.org.

Adding (integrating) the three resulting curves we get three values that represent the illuminant’s coordinates in the XYZ color space.  The White Point is obtained by dividing these coordinates by the Y value to normalize it to 1.

For example a Standard Daylight Illuminant with a Correlated Color Temperature of 5300 kelvins has a White Point of[1]

XYZn = [0.9593 1.0000 0.8833]

assuming CIE (2012) 2-deg XYZ “physiologically relevant” Color Matching Functions from cvrl.org. Continue reading White Point, CCT and Tint

A Just Noticeable Color Difference

While checking some out-of-gamut tones on an xy Chromaticity Diagram I started to wonder how far two tones needed to be in order for an observer to notice a difference.  Were the tones in the yellow and red clusters below discernible or would they be indistinguishable, all being perceived as the same ‘color’?

Figure 1. Samples off an image plotted on a typical xy Chromaticity diagram (black dots).

Continue reading A Just Noticeable Color Difference

Phase One IQ3 100MP Trichromatic vs Standard Back Linear Color, Part III

Over the last two posts we’ve been exploring some of the differences introduced by tweaks to the Color Filter Array of the Phase One IQ3 100MP Trichromatic Digital Back versus its original incarnation, the Standard Back.  Refer to those for the background.  In this article we will delve into some of these differences quantitatively[1].

Let’s start with the compromise color matrices we derived from David Chew’s captures of a ColorChecher 24 in the shade of a sunny November morning in Ohio[2].   These are the matrices necessary to convert white balanced raw data to the perceptual CIE XYZ color space, where it is said there should be one-to-one correspondence with colors as perceived by humans, and therefore where most measurements are performed.  They are optimized for each back in the current conditions but they are not perfect, the reason for the word ‘compromise’ in their name:

Figure 1. Optimized Linear Compromise Color Matrices for the Phase One IQ3 100 MP Standard and Trichromatic Backs under approximately D65 light.

Continue reading Phase One IQ3 100MP Trichromatic vs Standard Back Linear Color, Part III

Color: Determining a Forward Matrix for Your Camera

We understand from the previous article that rendering color with Adobe DNG raw conversion essentially means mapping raw data in the form of rgb triplets into a standard color space via a Profile Connection Space in a two step process

    \[ Raw Data \rightarrow  XYZ_{D50} \rightarrow RGB_{standard} \]

The first step white balances and demosaics the raw data, which at that stage we will refer to as rgb, followed by converting it to XYZ_{D50} Profile Connection Space through linear projection by an unknown ‘Forward Matrix’ (as DNG calls it) of the form

(1)   \begin{equation*} \left[ \begin{array}{c} X_{D50} \\ Y_{D50} \\ Z_{D50} \end{array} \right] = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \left[ \begin{array}{c} r \\ g \\ b \end{array} \right] \end{equation*}

with data as column-vectors in a 3xN array.  Determining the nine a coefficients of this matrix M is the main subject of this article[1]. Continue reading Color: Determining a Forward Matrix for Your Camera