Tag Archives: chromatic adaptation

Cone Fundamentals & the LMS Color Space

In the last article we showed how a digital camera’s captured raw data is related to Color Science.  In my next trick I will show that CIE 2012 2 deg XYZ Color Matching Functions \bar{x}, \bar{y}, \bar{z} displayed in Figure 1 are an exact linear transform of Stockman & Sharpe (2000) 2 deg Cone Fundamentals \bar{\rho}, \bar{\gamma}, \bar{\beta} displayed in Figure 2

(1)   \begin{equation*} \left[ \begin{array}{c} \bar{x}} \\ \bar{y} \\ \bar{z} \end{array} \right] = M_{lx} * \left[ \begin{array} {c}\bar{\rho} \\ \bar{\gamma} \\ \bar{\beta} \end{array} \right] \end{equation*}

with CMFs and CFs in 3xN format, M_{lx} a 3×3 matrix and * matrix multiplication.  Et voilà:[1]

Figure 1.  Solid lines: CIE (2012) 2° XYZ “physiologically-relevant” Colour Matching Functions and photopic Luminous Efficiency Function (V) from cvrl.org, the Colour & Vision Research Laboratory at UCL.  Dotted lines: The Cone Fundamentals in Figure 2 after linear transformation by 3×3 matrix Mlx below.  Source: cvrl.org.

Continue reading Cone Fundamentals & the LMS Color Space

How Is a Raw Image Rendered?

What are the basic low level steps involved in raw file conversion?  In this article I will discuss what happens under the hood of digital camera raw converters in order to turn raw file data into a viewable image, a process sometimes referred to as ‘rendering’.  We will use the following raw capture by a Nikon D610 to show how image information is transformed at every step along the way:

Nikon D610 with AF-S 24-120mm f/4 lens at 24mm f/8 ISO100, minimally rendered from raw as outlined in the article.
Figure 1. Nikon D610 with AF-S 24-120mm f/4 lens at 24mm f/8 ISO100, minimally rendered from raw by Octave/Matlab following the steps outlined in the article.

Rendering = Raw Conversion + Editing

Continue reading How Is a Raw Image Rendered?

System MTF from Bayer Sensors

In this and the previous article I discuss how Modulation Transfer Functions (MTF) obtained from every raw color plane of a Bayer CFA in isolation can be combined to provide an objective and meaningful composite MTF curve for the imaging system as a whole.  There are two main ways to accomplish this goal:

  • an input-referred linear Hardware System MTF (MTF_L) that reflects the mix of spectral information captured in the raw data, divorced from downstream color science; and
  • an output-referred linear Luminance System MTF (MTF_Y) that reflects the luminance channel of the image as neutrally displayed.

Both are valid on their own, though the weights of the former are fixed for any Bayer sensor while the latter are scene, camera/lens and illuminant dependent.  For this reason I usually prefer input-referred weights as a first pass when comparing cameras and lens hardware in similar conditions. Continue reading System MTF from Bayer Sensors