Tag Archives: aliasing

The Nikon Z7’s Insane Sharpness

Ever since getting a Nikon Z7 MILC a few months ago I have been literally blown away by the level of sharpness it produces.   I thought that my surprise might be the result of moving up from 24 to 45.7MP, or the excellent pin-point focusing mode, or the lack of an Antialiasing filter.  Well, it turns out that there is probably more at work than that.

This weekend I pulled out the largest cutter blade I could find and set it up rough and tumble near vertically about 10 meters away  to take a peek at what the MTF curves that produce such sharp results might look like.

Continue reading The Nikon Z7’s Insane Sharpness

Canon’s High-Res Optical Low Pass Filter

Canon recently introduced its EOS-1D X Mark III Digital Single-Lens Reflex [Edit: and now also possibly the R5 Mirrorless ILC] touting a new and improved Anti-Aliasing filter, which they call a High-Res Gaussian Distribution LPF, claiming that

“This not only helps to suppress moiré and color distortion,
but also improves resolution.”

Figure 1. Artist’s rendition of new High-res Low Pass Filter, courtesy of Canon USA

In this article we will try to dissect the marketing speak and understand a bit better the theoretical implications of the new AA.  For the abridged version, jump to the Conclusions at the bottom.  In a picture:

Canon High-Res Anti-Aliasing filter
Figure 16: The less psychedelic, the better.

Continue reading Canon’s High-Res Optical Low Pass Filter

Taking the Sharpness Model for a Spin – II

This post  will continue looking at the spatial frequency response measured by MTF Mapper off slanted edges in DPReview.com raw captures and relative fits by the ‘sharpness’ model discussed in the last few articles.  The model takes the physical parameters of the digital camera and lens as inputs and produces theoretical directional system MTF curves comparable to measured data.  As we will see the model seems to be able to simulate these systems well – at least within this limited set of parameters.

The following fits refer to the green channel of a number of interchangeable lens digital camera systems with different lenses, pixel sizes and formats – from the current Medium Format 100MP champ to the 1/2.3″ 18MP sensor size also sometimes found in the best smartphones.  Here is the roster with the cameras as set up:

Table 1. The cameras and lenses under test.

Continue reading Taking the Sharpness Model for a Spin – II

A Simple Model for Sharpness in Digital Cameras – AA

This article will discuss a simple frequency domain model for an AntiAliasing (or Optical Low Pass) Filter, a hardware component sometimes found in a digital imaging system[1].  The filter typically sits just above the sensor and its objective is to block as much of the aliasing and moiré creating energy above the monochrome Nyquist spatial frequency while letting through as much as possible of the real image forming energy below that, hence the low-pass designation.

Downsizing Box 4X
Figure 1. The blue line indicates the pass through performance of an ideal anti-aliasing filter presented with an Airy PSF (Original): pass all spatial frequencies below Nyquist (0.5 c/p) and none above that. No filter has such ideal characteristics and if it did its hard edges would result in undesirable ringing in the image.

In consumer digital cameras it is often implemented  by introducing one or two birefringent plates in the sensor’s filter stack.  This is how Nikon shows it for one of its DSLRs:

d800-aa1
Figure 2. Typical Optical Low Pass Filter implementation  in a current Digital Camera, courtesy of Nikon USA (yellow displacement ‘d’ added).

Continue reading A Simple Model for Sharpness in Digital Cameras – AA

A Simple Model for Sharpness in Digital Cameras – Sampling & Aliasing

Having shown that our simple two dimensional MTF model is able to predict the performance of the combination of a perfect lens and square monochrome pixel with 100% Fill Factor we now turn to the effect of the sampling interval on spatial resolution according to the guiding formula:

(1)   \begin{equation*} MTF_{Sys2D} = \left|(\widehat{ PSF_{lens} }\cdot \widehat{PIX_{ap} })\right|_{pu}\ast\ast\: \delta\widehat{\delta_{pitch}} \end{equation*}

The hats in this case mean the Fourier Transform of the relative component normalized to 1 at the origin (_{pu}), that is the individual MTFs of the perfect lens PSF, the perfect square pixel and the delta grid;  ** represents two dimensional convolution.

Sampling in the Spatial Domain

While exposed a pixel sees the scene through its aperture and accumulates energy as photons arrive.  Below left is the representation of, say, the intensity that a star projects on the sensing plane, in this case resulting in an Airy pattern since we said that the lens is perfect.  During exposure each pixel integrates (counts) the arriving photons, an operation that mathematically can be expressed as the convolution of the shown Airy pattern with a square, the size of effective pixel aperture, here assumed to have 100% Fill Factor.  It is the convolution in the continuous spatial domain of lens PSF with pixel aperture PSF shown in Equation (2) of the first article in the series.

Sampling is then the product of an infinitesimally small Dirac delta function at the center of each pixel, the red dots below left, by the result of the convolution, producing the sampled image below right.

Footprint-PSF3
Figure 1. Left, 1a: A highly zoomed (3200%) image of the lens PSF, an Airy pattern, projected onto the imaging plane where the sensor sits. Pixels shown outlined in yellow. A red dot marks the sampling coordinates. Right, 1b: The sampled image zoomed at 16000%, 5x as much, because in this example each pixel’s width is 5 linear units on the side.

Continue reading A Simple Model for Sharpness in Digital Cameras – Sampling & Aliasing

A Simple Model for Sharpness in Digital Cameras – I

The next few posts will describe a linear spatial resolution model that can help a photographer better understand the main variables involved in evaluating the ‘sharpness’ of photographic equipment and related captures.   I will show numerically that the combined spectral frequency response (MTF) of a perfect AAless monochrome digital camera and lens in two dimensions can be described as the magnitude of the normalized product of the Fourier Transform (FT) of the lens Point Spread Function by the FT of the pixel footprint (aperture), convolved with the FT of a rectangular grid of Dirac delta functions centered at each  pixel:

    \[ MTF_{2D} = \left|\widehat{ PSF_{lens} }\cdot \widehat{PIX_{ap} }\right|_{pu}\ast\ast\: \delta\widehat{\delta_{pitch}} \]

With a few simplifying assumptions we will see that the effect of the lens and sensor on the spatial resolution of the continuous image on the sensing plane can be broken down into these simple components.  The overall ‘sharpness’ of the captured digital image can then be estimated by combining the ‘sharpness’ of each of them.

The stage will be set in this first installment with a little background and perfect components.  Later additional detail will be provided to take into account pixel aperture and Anti-Aliasing filters.  Then we will look at simple aberrations.  Next we will learn how to measure MTF curves for our equipment, and look at numerical methods to model PSFs and MTFs from the wavefront at the aperture. Continue reading A Simple Model for Sharpness in Digital Cameras – I

The Slanted Edge Method

My preferred method for measuring the spatial resolution performance of photographic equipment these days is the slanted edge method.  It requires a minimum amount of additional effort compared to capturing and simply eye-balling a pinch, Siemens or other chart but it gives more, useful, accurate, quantitative information in the language and units that have been used to characterize optical systems for over a century: it produces a good approximation to  the Modulation Transfer Function of the two dimensional camera/lens system impulse response – at the location of the edge in the direction perpendicular to it.

Much of what there is to know about an imaging system’s spatial resolution performance can be deduced by analyzing its MTF curve, which represents the system’s ability to capture increasingly fine detail from the scene, starting from perceptually relevant metrics like MTF50, discussed a while back.

In fact the area under the curve weighted by some approximation of the Contrast Sensitivity Function of the Human Visual System is the basis for many other, better accepted single figure ‘sharpness‘ metrics with names like Subjective Quality Factor (SQF), Square Root Integral (SQRI), CMT Acutance, etc.   And all this simply from capturing the image of a slanted edge, which one can actually and somewhat easily do at home, as presented in the next article.

Continue reading The Slanted Edge Method