Category Archives: Fourier Optics

Introduction to Texture MTF

Texture MTF is a method to measure the sharpness of a digital camera and lens by capturing the image of a target of known characteristics.  It purports to better evaluate the perception of fine details in low contrast areas of the image – what is referred to as ‘texture’ – in the presence of noise reduction, sharpening or other non-linear processing performed by the camera before writing data to file.

Figure 1. Image of Dead Leaves low contrast target. Such targets are designed to have controlled scale and direction invariant features with a power law Power Spectrum.

The Modulation Transfer Function (MTF) of an imaging system represents its spatial frequency response,  from which many metrics related to perceived sharpness are derived: MTF50, SQF, SQRI, CMT Acutance etc.  In these pages we have used to good effect the slanted edge method to obtain accurate estimates of a system’s MTF curves in the past.[1]

In this article we will explore proposed methods to determine Texture MTF and/or estimate the Optical Transfer Function of the imaging system under test from a reference power-law Power Spectrum target.  All three rely on variations of the ratio of captured to reference image in the frequency domain: straight Fourier Transforms; Power Spectral Density; and Cross Power Density.  In so doing we will develop some intuitions about their strengths and weaknesses. Continue reading Introduction to Texture MTF

Fourier Optics and the Complex Pupil Function

In the last article we learned that a complex lens can be modeled as just an entrance pupil, an exit pupil and a geometrical optics black-box in between.  Goodman[1] suggests that all optical path errors for a given Gaussian point on the image plane can be thought of as being introduced by a custom phase plate at the pupil plane, delaying or advancing the light wavefront locally according to aberration function \Delta W(u,v) as earlier described.

The phase plate distorts the forming wavefront, introducing diffraction and aberrations, while otherwise allowing us to treat the rest of the lens as if it followed geometrical optics rules.  It can be associated with either the entrance or the exit pupil.  Photographers are usually concerned with the effects of the lens on the image plane so we will associate it with the adjacent Exit Pupil.

aberrations coded as phase plate in exit pupil generalized complex pupil function
Figure 1.  Aberrations can be fully described by distortions introduced by a fictitious phase plate inserted at the uv exit pupil plane.  The phase error distribution is the same as the path length error described by wavefront aberration function ΔW(u,v), introduced in the previous article.

Continue reading Fourier Optics and the Complex Pupil Function

An Introduction to Pupil Aberrations

As discussed in the previous article, so far we have assumed ideal optics, with spherical wavefronts propagating into and out of the lens’ Entrance and Exit pupils respectively.  That would only be true if there were no aberrations. In that case the photon distribution within the pupils would be uniform and such an optical system would be said to be diffraction limited.

Figure 1.   Optics as a black box, fully described for our purposes by its terminal properties at the Entrance and Exit pupils.  A horrible attempt at perspective by your correspondent: the Object, Pupils and Image planes should all be parallel and share the optical axis z.

On the other hand if lens imperfections, aka aberrations, were present the photon distribution in the Exit Pupil would be distorted, thus unable to form a perfectly  spherical wavefront out of it, with consequences for the intensity distribution of photons reaching the image.

Either pupil can be used to fully describe the light collection and concentration characteristics of a lens.  In imaging we are typically interested in what happens after the lens so we will choose to associate the performance of the optics with the Exit Pupil. Continue reading An Introduction to Pupil Aberrations